Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients

被引:0
|
作者
Homeier, HHH
Steinborn, EO
机构
来源
关键词
Ab initio program; basis function; coupling coefficient; gaunt coefficient; selection rule; symmetry relation;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spherical harmonics are of considerable importance for computations involving basis functions corresponding to large values of the angular momentum quantum number l. Their use allows efficient coding of programs involving such basis functions because the formulae of the coupling coefficients are simple. The choice of real spherical harmonics allows one to avoid the use of complex quantities in computer programs that increase storage and CPU time requirements. In this paper, certain properties of the coupling coefficients for real spherical harmonics are derived that are necessary for an efficient computation of coupling terms.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [1] Some characterizations of the spherical harmonics coefficients for isotropic random fields
    Baldi, Paolo
    Marinucci, Domenico
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (05) : 490 - 496
  • [2] SOME TRANSFORMATION PROPERTIES FOR COEFFICIENTS IN A SPHERICAL HARMONICS EXPANSION OF EARTHS EXTERNAL GRAVITATIONAL POTENTIAL
    AARDOOM, L
    [J]. TELLUS, 1969, 21 (04): : 572 - &
  • [3] On the evaluation of rotation coefficients for spherical harmonics using binomial coefficients
    Guseinov, II
    [J]. JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1996, 366 (1-2): : 119 - 121
  • [4] Spherically symmetrical properties of expansion coefficients for translation of spherical harmonics
    Guseinov, II
    [J]. JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1996, 367 : 83 - 86
  • [6] HANSEN COEFFICIENTS AND GENERALIZED SPHERICAL-HARMONICS
    GIACAGLIA, GEO
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1987, 39 (01) : 171 - 178
  • [7] Spherical harmonics and basic coupling coefficients for the group SO(5) in an SO(3) basis
    Rowe, DJ
    Turner, PS
    Repka, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (07) : 2761 - 2784
  • [8] CLEBSCH-GORDAN COEFFICIENTS,SPHERICAL HARMONICS,AND d FUNCTIONS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    [J]. Chinese Physics C, 2014, (09) : 505 - 505
  • [9] Clebsch-gordan coefficients, spherical harmonics, andd functions
    [J]. The European Physical Journal C - Particles and Fields, 2000, 15 (1-4): : 208 - 208
  • [10] CLEBSCH-GORDAN COEFFICIENTS,SPHERICAL HARMONICS,AND d FUNCTIONS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D'Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    [J]. Chinese Physics C, 2014, 38 (09) : 505