Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

被引:19
|
作者
Aziz, Jonathan D. [1 ]
Parker, Jeffrey S. [2 ]
Scheeres, Daniel J. [1 ]
Englander, Jacob A. [3 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA
[2] Adv Space, Boulder, CO 80301 USA
[3] NASA, Goddard Space Flight Ctr, Code 595,8800 Greenbelt Rd, Greenbelt, MD 20771 USA
来源
JOURNAL OF THE ASTRONAUTICAL SCIENCES | 2018年 / 65卷 / 02期
基金
美国国家科学基金会;
关键词
Low-thrust; Trajectory optimization; Differential dynamic programming; Sundman transformation; ORBIT TRANSFER;
D O I
10.1007/s40295-017-0122-8
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J(2) perturbation and lunar gravity included for a 500 revolution transfer.
引用
收藏
页码:205 / 228
页数:24
相关论文
共 50 条
  • [1] LOW-THRUST MANY-REVOLUTION TRAJECTORY OPTIMIZATION VIA DIFFERENTIAL DYNAMIC PROGRAMMING AND A SUNDMAN TRANSFORMATION
    Aziz, Jonathan D.
    Parker, Jeffrey S.
    Scheeres, Daniel J.
    Englander, Jacob A.
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 529 - 548
  • [2] Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation
    Aziz, Jonathan D. (jonathan.aziz@colorado.edu), 1600, Springer New York (65):
  • [3] Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation
    Jonathan D. Aziz
    Jeffrey S. Parker
    Daniel J. Scheeres
    Jacob A. Englander
    The Journal of the Astronautical Sciences, 2018, 65 : 205 - 228
  • [4] ON OPTIMIZATION OF MANY-REVOLUTION LOW-THRUST ORBIT TRANSFERS: PART 1
    Kiforenko, B. N.
    Vasil'ev, I. Yu.
    INTERNATIONAL APPLIED MECHANICS, 2008, 44 (07) : 810 - 817
  • [5] Q-Law Aided Direct Trajectory Optimization of Many-Revolution Low-Thrust Transfers
    Shannon, Jackson L.
    Ozimek, Martin T.
    Atchison, Justin A.
    Hartzell, Christine M.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2020, 57 (04) : 672 - 682
  • [6] On optimization of many-revolution low-thrust orbit transfers: Part 2
    B. N. Kiforenko
    I. Yu. Vasil’ev
    International Applied Mechanics, 2008, 44 : 1050 - 1055
  • [7] On optimization of many-revolution low-thrust orbit transfers: Part 2
    Kiforenko, B. N.
    Vasil'ev, I. Yu.
    INTERNATIONAL APPLIED MECHANICS, 2008, 44 (09) : 1050 - 1055
  • [8] On optimization of many-revolution low-thrust orbit transfers: Part 1
    B. N. Kiforenko
    I. Yu. Vasil’ev
    International Applied Mechanics, 2008, 44 : 810 - 817
  • [9] FRAMEWORK FOR OPTIMIZING MANY-REVOLUTION LOW-THRUST TRANSFERS
    Olikara, Zubin P.
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 1355 - 1373
  • [10] Direct Optimization of Low-thrust Many-revolution Earth-orbit Transfers
    Gao Yang Academy of Opto-Electronics
    Chinese Journal of Aeronautics, 2009, (04) : 426 - 433