The Vectorial Minimum Barrier Distance

被引:0
|
作者
Karsnas, Andreas [1 ,2 ]
Strand, Robin [1 ]
Saha, Punam K. [3 ]
机构
[1] Uppsala Univ, Ctr Image Anal, Uppsala, Sweden
[2] Visiopharm AS, Horsholm, Denmark
[3] Univ Iowa, Dept ECE, Dept Radiol, Iowa City, IA USA
关键词
IMAGE SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the vectorial Minimum Barrier Distance (MBD), a method for computing a gray-weighted distance transform while also incorporating information from vectorial data. Compared to other similar tools that use vectorial data, the proposed method requires no training and does not assume having only one background class. We describe a region-growing algorithm for computing the vectorial MBD efficiently. The method is evaluated on two types of multi-channel images: color images and textural features. Different path-cost functions for calculating the multidimensional path-cost distance are also compared. The results show that by combining multi-channel images into vectorial information the performance of the vectorial MBD segmentation is improved compared to when one channel is used. This implies that the method can be a good way of incorporating multi-channel information in interactive segmentation.
引用
收藏
页码:792 / 795
页数:4
相关论文
共 50 条
  • [1] The minimum barrier distance
    Strand, Robin
    Ciesielski, Krzysztof Chris
    Malmberg, Filip
    Saha, Punam K.
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (04) : 429 - 437
  • [2] Spectral segmentation via minimum barrier distance
    Zhang, Jing Mao
    Shen, Yan Xia
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (24) : 25713 - 25729
  • [3] The Minimum Barrier Distance: A Summary of Recent Advances
    Strand, Robin
    Ciesielski, Krzysztof Chris
    Malmberg, Filip
    Saha, Punam K.
    [J]. DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2017, 2017, 10502 : 57 - 68
  • [4] A minimum barrier distance for multivariate images with applications
    Minh On Vu Ngoc
    Boutry, Nicolas
    Fabrizio, Jonathan
    Geraud, Thierry
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 197
  • [5] Spectral segmentation via minimum barrier distance
    Jing Mao Zhang
    Yan Xia Shen
    [J]. Multimedia Tools and Applications, 2017, 76 : 25713 - 25729
  • [6] Efficient algorithm for finding the exact minimum barrier distance
    Ciesielski, Krzysztof Chris
    Strand, Robin
    Malmberg, Filip
    Saha, Punam K.
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 123 : 53 - 64
  • [7] The minimum barrier distance – stability to seed point position
    Strand, Robin
    Malmberg, Filip
    Saha, Punam K
    Linnér, Elisabeth
    [J]. 1600, Springer Verlag (8668): : 111 - 121
  • [8] The Minimum Barrier Distance - Stability to Seed Point Position
    Strand, Robin
    Malmberg, Filip
    Saha, Punam K.
    Linner, Elisabeth
    [J]. DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2014, 2014, 8668 : 111 - 121
  • [9] A vectorial tree distance measure
    Priel, Avner
    Tamir, Boaz
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] A vectorial tree distance measure
    Avner Priel
    Boaz Tamir
    [J]. Scientific Reports, 12