The Structure of Multigranular Rough Sets

被引:2
|
作者
Jarvinen, Jouni [1 ]
Radeleczki, Sandor [2 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
[2] Univ Miskolc, Inst Math, H-3515 Miskolc, Hungary
关键词
Equivalence relation; multigranular approximation; definable set; rough set; coherence; tolerance relation; irredundant covering; atomistic Boolean lattice; completely distributive lattice; Dedekind-MacNeille completion;
D O I
10.3233/FI-2020-1961
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study multigranulation spaces of two equivalences. The lattice-theoretical properties of so-called "optimistic" and "pessimistic" multigranular approximation systems are given. We also consider the ordered sets of rough sets determined by these approximation pairs.
引用
收藏
页码:17 / 41
页数:25
相关论文
共 50 条
  • [1] Lattices defined by multigranular rough sets
    Gégény, Dávid
    Kovács, László
    Radeleczki, Sándor
    [J]. International Journal of Approximate Reasoning, 2022, 151 : 413 - 429
  • [2] On Covering based Pessimistic Multigranular Rough Sets
    Tripathy, B. K.
    Govindarajulu, K.
    [J]. 2014 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS, 2014, : 708 - 713
  • [3] On Multigranular Approximate Rough Equivalence of Sets and Approximate Reasoning
    Tripathy, B. K.
    Saraf, Prateek
    Parida, S. Ch.
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 2, 2015, 32 : 605 - 616
  • [4] On the Approximate Equalities of Multigranular Rough Sets and Approximate Reasoning
    Tripathy, B. K.
    Mitra, Anirban
    [J]. 2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND NETWORKING TECHNOLOGIES (ICCCNT), 2013,
  • [5] On Algebraic and Topological Properties of Neighbourhood Based Multigranular Rough Sets
    Tripathy, B. K.
    Mitra, Anirban
    [J]. 2014 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2014,
  • [6] Some More Properties of Covering Based Pessimistic Multigranular Rough Sets
    Tripathy, B. K.
    Govindarajulu, K.
    [J]. INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 1, 2015, 339 : 555 - 564
  • [7] On the structure of generalized rough sets
    Kondo, M
    [J]. INFORMATION SCIENCES, 2006, 176 (05) : 589 - 600
  • [8] Topological structure of generalized rough sets
    Li, Zhaowen
    Xie, Tusheng
    Li, Qingguo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (06) : 1066 - 1071
  • [9] On the lattice structure of preclusive rough sets
    Cattaneo, G
    Ciucci, D
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 121 - 126
  • [10] THE TOPOLOGICAL STRUCTURE IN PARAMETERIZED ROUGH SETS
    Tsang, Eric C. C.
    Zha, Suyun
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 687 - 692