Atomic layer deposition of Co3O4 nanocrystals on N-doped electrospun carbon nanofibers for oxygen reduction and oxygen evolution reactions

被引:22
|
作者
Khalily, Mohammad Aref [1 ,2 ]
Patil, Bhushan [1 ]
Yilmaz, Eda [1 ]
Uyar, Tamer [1 ]
机构
[1] Bilkent Univ, Natl Nanotechnol Res Ctr UNAM, Inst Mat Sci & Nanotechnol, TR-06800 Ankara, Turkey
[2] Univ Twente, MESA Inst Nanotechnol, Lab Biomol Nanotechnol, NL-7500 AE Enschede, Netherlands
来源
NANOSCALE ADVANCES | 2019年 / 1卷 / 03期
关键词
COBALT-OXIDE; ENHANCED ACTIVITY; CATALYSTS; ELECTROCATALYSTS; NANOPARTICLES; PERFORMANCE; ALKALINE; MECHANISM; OXIDATION; GRAPHENE;
D O I
10.1039/c8na00330k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered as the two crucial reactions in key renewable-energy technologies including fuel cells and water splitting. Despite promising research progress in the preparation of various non-noble metal based electrocatalysts, it is still highly challenging but desirable to develop novel fabrication strategies to synthesize highly active and cost-effective ORR/OER bifunctional electrocatalysts in a precisely controlled manner. Herein, we report atomic layer deposition (ALD) of highly monodisperse Co3O4 nanocrystals of different sizes on N-doped electrospun carbon nanofibers (nCNFs) as high performance bifunctional catalysts (Co@nCNFs) for the ORR and OER. Co@nCNFs (with an average Co3O4 particle size of similar to 3 nm) show high ORR performance exhibiting an onset potential of 0.87 V with a low Tafel slope of 119 mV dec (1) approaching that of commercial Pt/C. Similarly, the Co@nCNF electrocatalyst showed remarkable catalytic activity in the OER. The turnover frequency (TOF) value determined at an overpotential of 550 mV for the Co@nCNFs is similar to 0.14 s(-1) which is ca. 3 and ca. 15-fold higher than those of bulk Co (similar to 0.05 s(-1)) and the standard state-of-the-art IrOx (0.0089 s(-1)) catalyst, respectively. This work will open new possibilities for fabrication of inexpensive non-noble metal materials in highly controlled manner for applications as bifunctional ORR/OER electrocatalysis.
引用
收藏
页码:1224 / 1231
页数:8
相关论文
共 50 条
  • [1] In situ construction of Co/Co3O4 with N-doped porous carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
    Peng, Huifen
    Zhang, Wulin
    Song, Yan
    Yin, Fuxing
    Zhang, Chengwei
    Zhang, Lei
    CATALYSIS TODAY, 2020, 355 : 286 - 294
  • [2] Delineating the roles of Co3O4 and N-doped carbon nanoweb (CNW) in bifunctional Co3O4/CNW catalysts for oxygen reduction and oxygen evolution reactions
    Liu, Siyang
    Li, Longjun
    Ahnb, Hyun S.
    Manthiram, Arumugam
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (21) : 11615 - 11623
  • [3] In situ decoration of Co3O4 on N-doped hollow carbon sphere as an effective bifunctional oxygen electrocatalyst for oxygen evolution and oxygen reduction reactions
    Duraisamy, Velu
    Arumugam, Natarajan
    Almansour, Abdulrahman I.
    Wang, Yucheng
    Liu, Terence Xiaoteng
    Kumar, Sakkarapalayam Murugesan Senthil
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 656
  • [4] One-Pot Synthesis of Co/Co3O4/Co(OH)2/N-Doped Mesoporous Carbon for Both Oxygen Reduction Reactions and Oxygen Evolution Reactions
    Wang, Qing
    Hu, Wen H.
    Huang, Yong M.
    CHEMISTRYSELECT, 2017, 2 (10): : 3191 - 3199
  • [5] Co3O4 Nanoparticle-Decorated N-Doped Mesoporous Carbon Nanofibers as an Efficient Catalyst for Oxygen Reduction Reaction
    Xue, Hairong
    Wang, Tao
    Gong, Hao
    Guo, Hu
    Fan, Xiaoli
    Song, Li
    Xia, Wei
    Feng, Yaya
    He, Jianping
    CATALYSTS, 2017, 7 (06):
  • [6] Alginate derived Co3O4/Co nanoparticles decorated in N-doped porous carbon as an efficient bifunctional catalyst for oxygen evolution and reduction reactions
    Zhan, Tianrong
    Lu, Sisi
    Liu, Xiaolin
    Teng, Hongni
    Hou, Wanguo
    ELECTROCHIMICA ACTA, 2018, 265 : 681 - 689
  • [7] Pd Doped Co3O4 Loaded on Carbon Nanofibers as Highly Efficient Free-Standing Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions
    Wang, Ruyue
    Hu, Deshuang
    Du, Peng
    Weng, Xiaodi
    Tang, Haolin
    Zhang, Ruiming
    Song, Wei
    Lin, Sen
    Huang, Kai
    Zhang, Ru
    Wang, Yonggang
    Fan, Dongyu
    Pan, Xuchao
    Lei, Ming
    FRONTIERS IN CHEMISTRY, 2022, 9
  • [8] Co3O4 supported on N, P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions
    Huang, Yingbin
    Zhang, Min
    Liu, Peng
    Cheng, Faliang
    Wang, Lishi
    CHINESE JOURNAL OF CATALYSIS, 2016, 37 (08) : 1249 - 1256
  • [9] Preparation of N-doped carbon supported Co3O4 nanoparticles as electrocatalysts for oxygen reduction reaction
    Liu, Jingjun
    Liu, Min
    Wang, Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [10] Hollow Co3O4 nanocapsules/N-doped carbon with oxygen vacancies as efficient electrocatalysts towards oxygen evolution reaction
    Wang, Baoli
    Luo, Shuchang
    Ai, Yijing
    Yao, Yucen
    Zhang, Siyue
    Huang, Yuhao
    Zhang, Xiaoping
    Sun, Wei
    DIAMOND AND RELATED MATERIALS, 2023, 136