On one-dimensional arbitrary high-order WENO schemes for systems of hyperbolic conservation laws

被引:4
|
作者
Pedro, Jose C. [1 ]
Banda, Mapundi K. [2 ]
Sibanda, Precious [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-3209 Scottsville, South Africa
[2] Univ Stellenbosch, Div Appl Math, ZA-7602 Matieland, South Africa
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2014年 / 33卷 / 02期
基金
新加坡国家研究基金会;
关键词
WENO reconstruction; Finite-volume schemes; Conservation laws; FINITE-VOLUME SCHEMES; UNSTRUCTURED MESHES;
D O I
10.1007/s40314-013-0066-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a one-dimensional case for an arbitrary high-order non-oscillatory finite-volume scheme is considered. This is an adaptation of the schemes presented in Dumbser and Kaser (J Comput Phys. 221:693-723, 2007). An entire polynomial inside each control volume is reconstructed in terms of hierarchical orthogonal polynomial bases over a reference element. A new numerical inter-cell flux function at the element interfaces is proposed. To validate the approach, several one-dimensional test problems with discontinuous solutions are computed. The results show an improvement on the non-oscillatory shock-capturing properties based on the new approach.
引用
收藏
页码:363 / 384
页数:22
相关论文
共 50 条
  • [1] On one-dimensional arbitrary high-order WENO schemes for systems of hyperbolic conservation laws
    José C. Pedro
    Mapundi K. Banda
    Precious Sibanda
    [J]. Computational and Applied Mathematics, 2014, 33 : 363 - 384
  • [2] HIGH-ORDER NUMERICAL SCHEMES FOR ONE-DIMENSIONAL NONLOCAL CONSERVATION LAWS
    Chalons, Christophe
    Goatin, Paola
    Villada, Luis M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01): : A288 - A305
  • [3] High-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws
    Tao, Zhanjing
    Li, Fengyan
    Qiu, Jianxian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 148 - 176
  • [4] High-order central schemes for hyperbolic systems of conservation laws
    Bianco, F
    Puppo, G
    Russo, G
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01): : 294 - 322
  • [5] High-Order Multi-resolution Central Hermite WENO Schemes for Hyperbolic Conservation Laws
    Zhanjing Tao
    Jinming Zhang
    Jun Zhu
    Jianxian Qiu
    [J]. Journal of Scientific Computing, 2024, 99
  • [6] High-Order Multi-resolution Central Hermite WENO Schemes for Hyperbolic Conservation Laws
    Tao, Zhanjing
    Zhang, Jinming
    Zhu, Jun
    Qiu, Jianxian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [7] A modified high-order symmetrical WENO scheme for hyperbolic conservation laws
    Abedian, Rooholah
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (04) : 1521 - 1538
  • [8] Central WENO schemes for hyperbolic systems of conservation laws
    Levy, D
    Puppo, G
    Russo, G
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1999, 33 (03): : 547 - 571
  • [9] Arbitrary high-order extended essentially non-oscillatory schemes for hyperbolic conservation laws
    Xu, Chunguang
    Zhang, Fan
    Dong, Haibo
    Jiang, Hang
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (07) : 2136 - 2154
  • [10] Relaxation WENO schemes for multidimensional hyperbolic systems of conservation laws
    Banda, Mapundi
    Seaid, Mohammed
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (05) : 1211 - 1234