Chaos without nonlinear dynamics

被引:39
|
作者
Corron, Ned J. [1 ]
Hayes, Scott T. [1 ]
Pethel, Shawn D. [1 ]
Blakely, Jonathan N. [1 ]
机构
[1] USA, RECOM, Redstone Arsenal, AL 35898 USA
关键词
D O I
10.1103/PhysRevLett.97.024101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A linear, second-order filter driven by randomly polarized pulses is shown to generate a waveform that is chaotic under time reversal. That is, the filter output exhibits determinism and a positive Lyapunov exponent when viewed backward in time. The filter is demonstrated experimentally using a passive electronic circuit, and the resulting waveform exhibits a Lorenz-like butterfly structure. This phenomenon suggests that chaos may be connected to physical theories whose underlying framework is not that of a traditional deterministic nonlinear dynamical system.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Nonlinear dynamics and chaos
    Moon, HT
    Kim, S
    Behringer, RP
    Kuramoto, Y
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (04): : 787 - 788
  • [2] Symmetry in Nonlinear Dynamics and Chaos
    Elaskar, Sergio
    [J]. SYMMETRY-BASEL, 2023, 15 (01):
  • [3] Chaos and nonlinear stochastic dynamics
    Naess, A
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2000, 15 (01) : 37 - 47
  • [4] NONLINEAR DYNAMICS Optoelectronic chaos
    Larger, Laurent
    Dudley, John M.
    [J]. NATURE, 2010, 465 (7294) : 41 - 42
  • [5] Environmental sustainability, nonlinear dynamics and chaos
    Junxi Zhang
    [J]. Economic Theory, 1999, 14 : 489 - 500
  • [6] Nonlinear dynamics - Synchronization from chaos
    Ashwin, P
    [J]. NATURE, 2003, 422 (6930) : 384 - 385
  • [7] Environmental sustainability, nonlinear dynamics and chaos
    Zhang, JX
    [J]. ECONOMIC THEORY, 1999, 14 (02) : 489 - 500
  • [8] Chaos and nonlinear dynamics: Advances and perspectives
    Karolyi, G.
    de Moura, A.
    Romano, M. C.
    Thiel, M.
    Kurths, J.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 165 (1): : 1 - 4
  • [9] NONLINEAR DYNAMICS - ORDERING CHAOS WITH DISORDER
    STROGATZ, SH
    [J]. NATURE, 1995, 378 (6556) : 444 - 444
  • [10] AN INTRODUCTION TO NONLINEAR DYNAMICS AND CHAOS THEORY
    MCCAULEY, JL
    [J]. PHYSICA SCRIPTA, 1988, T20 : 5 - 57