Online estimation of hazard rate under random censoring

被引:4
|
作者
Douma, Malik [1 ]
Mokkadem, Abdelkader [2 ]
Pelletier, Mariane [2 ]
机构
[1] Dexia SA, Bast Tower,Pl Champ Mars 5, B-1050 Brussels, Belgium
[2] Univ Paris Saclay, Lab Math Versailles, UVSQ, CNRS, F-78035 Versailles, France
关键词
Hazard function; Censored data; Recursive estimation; Kernel estimator; Weak convergence rate; Confidence intervals; STOCHASTIC-APPROXIMATION METHOD; DENSITY; LOGARITHM; LAW;
D O I
10.1016/j.jspi.2017.10.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a recursive kernel estimator of the hazard function in the framework of independent rightly censored data. We compute its bias and variance, and compare its mean squared error to those of non-recursive kernel estimators. We also establish its weak convergence rate and point out that, for estimation by confidence intervals, our recursive estimator performs better than the non-recursive ones. This is confirmed by the simulations study we give. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 104
页数:18
相关论文
共 50 条