Non-linear MHD simulation of ELM energy deposition

被引:44
|
作者
Huijsmans, G. T. A. [1 ]
Loarte, A. [1 ]
机构
[1] ITER Org, F-13115 St Paul Les Durance, France
关键词
ASDEX-UPGRADE; LOSSES;
D O I
10.1088/0029-5515/53/12/123023
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The mechanisms of edge-localized mode (ELM) energy deposition are studied by means of non-linear magnetohydrodynamic (MHD) simulation of ELMs. The footprint of the ELM heat flux at the divertor is found to increase approximately linearly with the total ELM energy loss for JET-scale plasmas, which is similar to the experimentally observed broadening of the ELM energy deposition with ELM energy loss. For these relatively large ELMs, in which conductive losses dominate, the divertor footprint broadening is due to an increase in the magnetic perturbation of the ballooning mode with increasing ELM energy loss, which results in a widening of the homoclinic tangles intersecting the target. The first results from ELM simulations in the ITER Q = 10 scenario indicate that on the ITER scale the broadening is similar for conductive and convective ELMs at least up to an ELM energy loss of 4 MJ. For the larger conductive-type ELMs the magnetic perturbation and its homoclinic tangles determine the pattern of the ELM heat flux at the divertor target similar to the JET-scale results. For the smaller convective ELMs, the ELM footprint is determined by the radial distance travelled by plasma filaments expelled by the ELM and the loss of the plasma energy in the filaments along the magnetic field lines.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Non-linear MHD simulation of ELM energy deposition
    Huijsmans, G. T. A.
    Loarte, A.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S57 - S63
  • [2] A simulation chain for reflectometry and non-linear MHD: type-I ELM case
    Vicente, J.
    da Silva, F.
    Hoelzl, M.
    Conway, G. D.
    Heuraux, S.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (12):
  • [3] Non-linear simulation of wave energy devices
    Mingham, CG
    Qian, L
    Causon, DM
    Ingram, DM
    PROCEEDINGS OF THE FOURTEENTH (2004) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2004, : 194 - 201
  • [4] Non-linear MHD modelling of ELM triggering by pellet injection in DIII-D and implications for ITER
    Futatani, S.
    Huijsmans, G.
    Loarte, A.
    Baylor, L. R.
    Commaux, N.
    Jernigan, T. C.
    Fenstermacher, M. E.
    Lasnier, C.
    Osborne, T. H.
    Pegourie, B.
    NUCLEAR FUSION, 2014, 54 (07)
  • [5] Extended full-MHD simulation of non-linear instabilities in tokamak plasmas
    Pamela, S. J. P.
    Bhole, A.
    Huijsmans, G. T. A.
    Nkonga, B.
    Hoelzl, M.
    Krebs, I.
    Strumberger, E.
    PHYSICS OF PLASMAS, 2020, 27 (10)
  • [6] DEVELOPMENT OF A NON-LINEAR RESISTIVE MHD CODE
    KURITA, G
    APPERT, K
    GRUBER, R
    VACLAVIK, J
    HELVETICA PHYSICA ACTA, 1983, 56 (04): : 970 - 970
  • [7] Non-linear modeling of core MHD in tokamaks
    Luetjens, H.
    Luciani, J-F
    Leblond, D.
    Halpern, F.
    Maget, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [8] NON-LINEAR EFFECTS ON DISSIPATIVE MHD MODES
    PAO, YP
    ROSENAU, P
    GUO, SC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (05) : 615 - 634
  • [9] NON-LINEAR SIMULATION OF THE IDEAL MHD TILTING MODE IN A PROLATE FIELD REVERSED CONFIGURATION
    BARNES, DC
    AYDEMIR, AY
    ANDERSON, DV
    SCHNACK, DD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 884 - 884
  • [10] Numerical modeling of a MHD non-linear radiative Maxwell nano fluid with activation energy
    Ahmed, Fariha
    Reza-E-Rabbi, Sk
    Ali, Md Yousuf
    Ali, Lasker Ershad
    Islam, Ariful
    Rahman, Md Azizur
    Roy, Raju
    Islam, Md Rafiqul
    Ahmmed, Sarder Firoz
    HELIYON, 2024, 10 (02)