Transient analysis for the cathode gas diffusion layer of PEM fuel cells

被引:70
|
作者
Song, Datong [1 ]
Wang, Qianpu [1 ]
Liu, Zhong-Sheng [1 ]
Huang, Cheng [1 ]
机构
[1] CNR, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
关键词
two-phase transport; transient analysis; PEM fuel cell; gas diffusion layer;
D O I
10.1016/j.jpowsour.2005.11.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A one-dimensional, non-isothermal, two-phase transient model has been developed to study the transient behaviour of water transport in the cathode gas diffusion layer of PEM fuel cells. The effects of four parameters, namely the liquid water saturation at the interface of the gas diffusion layer and flow channels, the proportion of liquid water to all of the water at the interface of the cathode catalyst layer and the gas diffusion layer, the current density, and the contact or wetting angle, on the transient distribution of liquid water saturation in the cathode gas diffusion layer are investigated. Especially, the time needed for liquid water saturation to reach steady state and the liquid water saturation at the interface of the cathode catalyst layer and gas diffusion layer are plotted as functions of the above four parameters. The ranges of water vapour condensation and liquid water evaporation are identified across the thickness of the gas diffusion layer. In addition, the effects of the above four parameters on the steady state distributions of gas phase pressure, water vapour concentration, oxygen concentration and temperature are also presented. It is found that increasing any one of the first three parameters will increase the water saturation at the interface of the catalyst layer and gas diffusion layer, but decrease the time needed for the liquid water saturation to reach steady state. When the liquid water saturation at the interface of the gas diffusion layer and flow channels is high enough (>= 0.1), the liquid water saturation at steady state is almost uniformly distributed across the thickness of the gas diffusion layer. It is also found that, under the given initial and boundary conditions in this paper, evaporation takes place within the gas diffusion layer close to the channel side and is the major process for water phase change at low current density (< 2000 A m(-2)); condensation occurs close to the catalyst layer side within the gas diffusion layer and dominates the phase change at high current density (> 5000 A m(-2)). For hydrophilic gas diffusion layers, both the time needed for liquid water saturation to reach steady state and the water saturation at the interface of the catalyst layer and gas diffusion layer will increase when the contact angle increases; but for hydrophobic gas diffusion layers, both of them decrease when the contact angle increases. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:928 / 942
页数:15
相关论文
共 50 条
  • [1] Fractal analysis of gas diffusion layer in PEM fuel cells
    Shi, Y
    Xiao, JS
    Pan, M
    Yuan, RZ
    [J]. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2006, 21 (01): : 22 - 25
  • [2] Fractal analysis of gas diffusion layer in PEM fuel cells
    Shi Y.
    Xiao J.
    Pan M.
    Yuan R.
    [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2006, 21 (1): : 22 - 25
  • [3] Fractal Analysis of Gas Diffusion Layer in PEM Fuel Cells
    石英
    肖金生
    [J]. Journal of Wuhan University of Technology(Materials Science), 2006, (01) : 22 - 25
  • [4] Coupled pore network model for the cathode gas diffusion layer in PEM fuel cells
    Gholipour, Hamed
    Kermani, Mohammad J.
    Zamanian, Rahim
    [J]. ACTA MECHANICA SINICA, 2021, 37 (02) : 331 - 348
  • [5] Coupled pore network model for the cathode gas diffusion layer in PEM fuel cells
    Hamed Gholipour
    Mohammad J. Kermani
    Rahim Zamanian
    [J]. Acta Mechanica Sinica, 2021, 37 : 331 - 348
  • [6] Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells
    Pamplona Solis, Blandy
    Cruz Arguello, Julio Cesar
    Gomez Barba, Leopoldo
    Polett Gurrola, Mayra
    Zarhri, Zakaryaa
    Lizeth TrejoArroyo, Danna
    [J]. SUSTAINABILITY, 2019, 11 (23)
  • [7] Water flow in the gas diffusion layer of PEM fuel cells
    Benziger, J
    Nehlsen, J
    Blackwell, D
    Brennan, T
    Itescu, J
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2005, 261 (1-2) : 98 - 106
  • [8] Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer
    Zhang, Zhuqian
    Wang, Xia
    Li, Jing
    Mourelatos, Zissimos P.
    Jia, Li
    [J]. SAE INTERNATIONAL JOURNAL OF MATERIALS AND MANUFACTURING, 2009, 1 (01) : 618 - 630
  • [9] Carbon xerogel as gas diffusion layer in PEM fuel cells
    Trefilov, Alexandra M. I.
    Tiliakos, Athanasios
    Serban, Elena C.
    Ceaus, Catalin
    Iordache, Stefan M.
    Voinea, Sanda
    Balan, Adriana
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) : 10448 - 10454
  • [10] Performance of a metallic gas diffusion layer for PEM fuel cells
    Zhang, Feng-Yuan
    Advani, Suresh G.
    Prasad, Ajay K.
    [J]. JOURNAL OF POWER SOURCES, 2008, 176 (01) : 293 - 298