Two inequalities for iterated stochastic integrals

被引:2
|
作者
Yan, LT [1 ]
机构
[1] Toyama Univ, Fac Sci, Dept Math, Toyama 9308555, Japan
关键词
60G44; 60H05; 60J55.;
D O I
10.1007/s00013-003-0025-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M = (M-t, F-t)(t)greater than or equal to0 be a continuous local martingale with quadratic variation process [M] and M-0 = 0. In this paper, we consider the corresponding sequence of the iterated stochastic integrals I-n(M) = (I-n(t, M), F-t)(n greater than or equal to 0), defined inductively by I-n(t, M) = integral(0)(t) In-1(s, M)dM(s) with I-0(t, M) = 1 and I-1(t, M) = M-t. We obtain a maximal inequality at any time and a local time inequality.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条