ON DUAL BICOMPLEX NUMBERS AND THEIR SOME ALGEBRAIC PROPERTIES

被引:0
|
作者
Halici, Serpil [1 ]
Curuk, Sule [1 ]
机构
[1] Pamukkale Univ, Fac Sci, Dept Math, TR-20070 Denizli, Turkey
来源
关键词
Bicomplex numbers; Dual numbers; Fibonacci sequence; COMPLEX FIBONACCI;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The object of this work is to contribute to the development of bicomplex numbers. For this purpose, in this study we firstly introduced bicomplex numbers with coefficients from complex Fibonacci sequence. And then, using Babadag's work [1], we examined the dual form of the newly defined numbers. Moreover, we gave some fundamental identities such as Cassini and Catalan identities provided by the elements in defined sequence.
引用
收藏
页码:387 / 398
页数:12
相关论文
共 50 条
  • [1] On Some Q-Dual Bicomplex Jacobsthal Numbers
    Halıcı, Serpil
    Curuk, Sule
    [J]. Springer Proceedings in Mathematics and Statistics, 2023, 414 : 175 - 189
  • [2] Some properties of bicomplex Pell and Pell-Lucas numbers
    Karatas, Adnan
    Halici, Serpil
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (03): : 701 - 709
  • [3] ON DUAL BICOMPLEX BALANCING AND LUCAS-BALANCING NUMBERS
    Uysal, Mine
    Ozkan, Engin
    Shannon, Anthony G.
    [J]. JOURNAL OF SCIENCE AND ARTS, 2023, (04): : 925 - 938
  • [4] SOME PROPERTIES OF FOURTH DEGREE ALGEBRAIC NUMBERS
    NAGELL, T
    [J]. ARKIV FOR MATEMATIK, 1969, 7 (06): : 517 - &
  • [5] SOME ARITHMETICAL PROPERTIES OF CONVERGENTS TO ALGEBRAIC NUMBERS
    Bugeaud, Yann
    Nguyen, Khoa d.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2023, 326 (01) : 17 - 36
  • [6] PROPERTIES OF REGULAR FUNCTIONS WITH VALUES IN BICOMPLEX NUMBERS
    Kim, Ji Eun
    Shon, Kwang Ho
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 507 - 518
  • [7] SOME ALGEBRAIC PROPERTIES OF WEAKLY NONINTERACTIVE FUZZY NUMBERS
    KAWAGUCHI, MF
    DATE, T
    [J]. FUZZY SETS AND SYSTEMS, 1994, 68 (03) : 281 - 291
  • [8] Quantum Calculus Approach to the Dual Bicomplex Fibonacci and Lucas Numbers
    Kome, S.
    Kome, C.
    Catarino, P.
    [J]. JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (02)
  • [9] SOME ALGEBRAIC PROPERTIES OF DUAL TOEPLITZ OPERATORS
    Kong, Linghui
    Lu, Yufeng
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (01): : 169 - 185
  • [10] On Bicomplex Jacobsthal Numbers
    Kilic, Nayil
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 969 - 976