Unsupervised and supervised machine learning for performance improvement of NFT optical transmission

被引:0
|
作者
Kotlyar, Oleksandr [1 ]
Pankratova, Maryna [1 ]
Kamalian, Morteza [1 ]
Vasylchenkova, Anastasiia [1 ]
Prilepsky, Jaroslaw E. [1 ]
Turitsyn, Sergei K. [1 ]
机构
[1] Aston Univ, Aston Inst Photon Technol, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Machine learning; support vector machine; k-means clustering; nonlinear Fourer transform; optical communications; NONLINEAR FOURIER-TRANSFORM; MODULATION;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply both the unsupervised and supervised machine learning (ML) methods, in particular, the k-means clustering and support vector machine (SVM) to improve the performance of the optical communication system based on the nonlinear Fourier transform (NFT). The NFT system employs the continuous NFT spectrum part to carry data up to 1000 km using the 16-QAM OFDM modulation. We classify the performance of the system in terms of BER versus signal power dependence. We show that the NFT system performance can be improved considerably by means of the ML techniques and that the more advanced SVM method typically outperforms the k-means clustering.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [1] Kernel Approaches to Unsupervised and Supervised Machine Learning
    Kung, Sun-Yuan
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2009, 2009, 5879 : 1 - 32
  • [2] Supervised Machine Learning Techniques for Quality of Transmission Assessment in Optical Networks
    Mata, Javier
    de Miguel, Ignacio
    Duran, Ramon J.
    Carlos Aguado, Juan
    Merayo, Noemi
    Ruiz, Lidia
    Fernandez, Patricia
    Lorenzo, Ruben M.
    Abril, Evaristo J.
    Tomkos, Ioannis
    [J]. 2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [3] Prediction of SGEMM GPU Kernel Performance using Supervised and Unsupervised Machine Learning Techniques
    Agrawal, Sanket
    Bansal, Akshay
    Rathor, Sandeep
    [J]. 2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [4] Self-Taught Anomaly Detection With Hybrid Unsupervised/Supervised Machine Learning in Optical Networks
    Chen, Xiaoliang
    Li, Baojia
    Proietti, Roberto
    Zhu, Zuqing
    Ben Yoo, S. J.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (07) : 1742 - 1749
  • [5] Unsupervised and Supervised Machine Learning in User Modeling for Intelligent Learning Environments
    Amershi, Saleema
    Conati, Cristina
    [J]. 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2007, : 72 - 81
  • [6] Detecting insurance fraud using supervised and unsupervised machine learning
    Debener, Joern
    Heinke, Volker
    Kriebel, Johannes
    [J]. JOURNAL OF RISK AND INSURANCE, 2023, 90 (03) : 743 - 768
  • [7] Unsupervised and supervised machine learning for total scattering and PDF analyses
    Billinge, S.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E244 - E244
  • [8] Artificial intelligence in dermatology: "unsupervised" versus "supervised" machine learning
    Pathania, Yashdeep Singh
    Budania, Anil
    [J]. INTERNATIONAL JOURNAL OF DERMATOLOGY, 2021, 60 (01) : E28 - E29
  • [9] Supervised and Unsupervised Machine Learning Approaches for Bridge Damage Prediction
    Tamura, S.
    Zhang, B.
    Wang, Y.
    Chen, F.
    Nguyen, K.
    [J]. STRUCTURAL HEALTH MONITORING 2013, VOLS 1 AND 2, 2013, : 182 - 189
  • [10] QUALES: Machine Translation Quality Estimation via Supervised and Unsupervised Machine Learning
    Etchegoyhen, Thierry
    Martinez Garcia, Eva
    Azpeitia, Andoni
    Alegria, Inaki
    Labaka, Gorka
    Otegi, Arantza
    Sarasola, Kepa
    Cortes, Itziar
    Jauregi, Amaia
    Ellakuria, Igor
    Calonge, Eusebi
    Martin, Maite
    [J]. PROCESAMIENTO DEL LENGUAJE NATURAL, 2018, (61): : 143 - 146