A noise robust front-end for speech recognition using hough transform and cumulative distribution mapping

被引:0
|
作者
Choi, Eric H. C. [1 ]
机构
[1] Natl ICT Australia, ATP Res Lab, Sydney, NSW, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a novel and noise robust front-end that employs the use of Hough transform for simultaneous frequency and temporal masking, together with cumulative distribution mapping of cepstral coefficients, for noisy speech recognition. Recognition experiments on the Aurora II connected digits database have revealed that the proposed front-end achieves an average digit recognition accuracy of 83.67%. Compared with the recognition results obtained by using the ETSI standard Mel-cepstral front-end, this accuracy represents a relative error rate reduction of around 58%.
引用
收藏
页码:286 / +
页数:2
相关论文
共 50 条
  • [1] Investigation of Speech Separation as a Front-End for Noise Robust Speech Recognition
    Narayanan, Arun
    Wang, DeLiang
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (04) : 826 - 835
  • [2] Front-End Feature Compensation for Noise Robust Speech Emotion Recognition
    Pandharipande, Meghna
    Chakraborty, Rupayan
    Panda, Ashish
    Das, Biswajit
    Kopparapu, Sunil Kumar
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [3] A robust front-end for telephone speech recognition
    Cho, HY
    Chi, SM
    Oh, YH
    [J]. PRICAI'98: TOPICS IN ARTIFICIAL INTELLIGENCE, 1998, 1531 : 636 - 644
  • [4] A noise-robust front-end for distributed speech recognition in mobile communications
    Addou, Djamel
    Selouani, Sid-Ahmed
    Kifaya, Kaoukeb
    Boudraa, Malika
    Boudraa, Bachir
    [J]. INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2007, 10 (04) : 167 - 173
  • [5] Front-end Feature Compensation and Denoising for Noise Robust Speech Emotion Recognition
    Chakraborty, Rupayan
    Panda, Ashish
    Pandharipande, Meghna
    Joshi, Sonal
    Kopparapu, Sunil Kumar
    [J]. INTERSPEECH 2019, 2019, : 3257 - 3261
  • [6] A comparison of front-end configurations for robust speech recognition
    Milner, B
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 797 - 800
  • [7] Efficient Noise-Robust Speech Recognition Front-End Based on the ETSI Standard
    Neves, Claudio
    Veiga, Arlindo
    Sa, Luis
    Perdigao, Fernando
    [J]. ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 609 - 612
  • [8] A Front-End Speech Enhancement System for Robust Automotive Speech Recognition
    Wang, Haikun
    Ye, Zhongfu
    Chen, Jingdong
    [J]. 2018 11TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2018, : 1 - 5
  • [9] Robust Front-End Processing For Emotion Recognition In Noisy Speech
    Pandharipande, Meghna
    Chakraborty, Rupayan
    Panda, Ashish
    Kopparapu, Sunil Kumar
    [J]. 2018 11TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2018, : 324 - 328
  • [10] Performance evaluation of front-end algorithms for robust speech recognition
    Cheng, O
    Abdulla, W
    Salcic, Z
    [J]. ISSPA 2005: THE 8TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 711 - 714