The Effect of the Degree of Polymerization and Polymer Composition on the Temperature Responsiveness of Cholesteric Semi-Interpenetrating Networks

被引:1
|
作者
Yue, Lansong [1 ,2 ,3 ,4 ]
Zhou, Guofu [1 ,2 ,3 ,5 ]
de Haan, Laurens T. T. [1 ,2 ,3 ]
机构
[1] South China Normal Univ, Natl Ctr Int Res Green Optoelect, SCNU TUE Joint Lab Device Integrated Respons Mat D, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Inst Electron Paper Displays, Guangzhou 510006, Peoples R China
[4] Eindhoven Univ Technol, Dept Chem Engn & Chem, Stimuli Respons Funct Mat & Devices, POB 513, NL-5600 MB Eindhoven, Netherlands
[5] Acad Shenzhen Guohua Optoelect, Shenzhen, Peoples R China
关键词
cholesteric reflectors; temperature responsiveness; responsive photonics; semi-interpenetrating networks; INVERSE OPAL;
D O I
10.3390/cryst12111614
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Cholesteric liquid crystal oligomers and polymers are promising materials for creating materials and devices with stimuli-responsive structural color, and the cholesteric to smectic pre-transition effect is of particular interest as it leads to a strong redshift in the reflected color upon cooling. Cholesteric polymers can be stabilized by the formation of semi-interpenetrating networks to obtain more robust photonic materials, but this tends to strongly suppress the pre-transition effect. Here, we show that the pre-transition effect in semi-interpenetrating networks based on main-chain cholesteric oligomers can be amplified by incorporating a smectic monomer and by increasing the degree of polymerization of the oligomers. This amplification counteracts the suppressing effect of the semi-interpenetrating network, and the resulting materials still show a significant band shift upon cooling. Presumably, both methods lead to the formation of more smectic domains in the cholesteric helix, which causes an amplified pre-transitional effect. The results bring us closer to the use of cholesteric semi-interpenetrating cholesteric networks for applications in smart sensing, healthcare, and safety devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Functional Semi-Interpenetrating Polymer Networks
    Wang, Minghao
    Jiang, Jiawei
    Liang, Shuofeng
    Sui, Cong
    Wu, Si
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024,
  • [2] Effect of spatial constraints on phase separation during polymerization in sequential semi-interpenetrating polymer networks
    N. V. Babkina
    Yu. S. Lipatov
    T. T. Alekseeva
    L. A. Sorochinskaya
    Yu. I. Datsyuk
    Polymer Science Series A, 2008, 50 : 798 - 807
  • [3] Effect of spatial constraints on phase separation during polymerization in sequential semi-interpenetrating polymer networks
    Babkina, N. V.
    Lipatov, Yu. S.
    Alekseeva, T. T.
    Sorochinskaya, L. A.
    Datsyuk, Yu. I.
    POLYMER SCIENCE SERIES A, 2008, 50 (07) : 798 - 807
  • [4] Anharmonicity and fragility in semi-interpenetrating polymer networks
    Carini, G
    D'Angelo, G
    Tripodo, G
    Bartolatta, A
    Di Marco, G
    Privalko, VP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (15) : 3559 - 3568
  • [5] Semi-interpenetrating Polymer Networks of Methyl Cellulose and Polyacrylamide Prepared by Frontal Polymerization
    Rassu, Mariella
    Alzari, Valeria
    Nuvoli, Daniele
    Nuvoli, Luca
    Sanna, Davide
    Sanna, Vanna
    Malucelli, Giulio
    Mariani, Alberto
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2017, 55 (07) : 1268 - 1274
  • [6] Polyhydroxyacrylate-polyurethane semi-interpenetrating polymer networks
    Rosu, D
    Ciobanu, C
    Cascaval, CN
    EUROPEAN POLYMER JOURNAL, 2001, 37 (03) : 587 - 595
  • [7] P and n dopable semi-interpenetrating polymer networks
    T.-X. Lav
    F. Tran-Van
    J.-P. Bonnet
    C. Chevrot
    S. Peralta
    D. Teyssié
    J. V. Grazulevicius
    Journal of Solid State Electrochemistry, 2007, 11 : 859 - 866
  • [8] Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
    Fong, Kara D.
    Wang, Tiesheng
    Kim, Hyun-Kyung
    Kumar, R. Vasant
    Smoukov, Stoyan
    ACS ENERGY LETTERS, 2017, 2 (09): : 2014 - 2020
  • [9] Polyhydroxyacrylate-polyurethane semi-interpenetrating polymer networks
    Rosu, D., 1600, Elsevier Science Ltd, Exeter, United Kingdom (37):
  • [10] P and n dopable semi-interpenetrating polymer networks
    Lav, T. -X.
    Tran-Van, F.
    Bonnet, J. -P.
    Chevrot, C.
    Peralta, S.
    Teyssie, D.
    Grazulevicius, J. V.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (06) : 859 - 866