A combined estimating function approach for fitting stationary point process models

被引:5
|
作者
Deng, C. [1 ]
Waagepetersen, R. P. [2 ]
Guan, Y. [3 ]
机构
[1] Yale Univ, Program Appl Math, New Haven, CT 06511 USA
[2] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg, Denmark
[3] Univ Miami, Dept Management Sci, Coral Gables, FL 33124 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Estimating function; Pairwise composite likelihood; Spatial point process; ESTIMATING EQUATIONS; INFERENCE; SELECTION;
D O I
10.1093/biomet/ast069
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A composite likelihood technique based on pairwise contributions provides a computationally simple but potentially inefficient approach for fitting spatial point process models. We propose a new estimation procedure that improves the efficiency. Our approach combines estimating functions derived from pairwise composite likelihood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate the efficacy of our proposed method through a simulation study and an application to the longleaf pine data.
引用
收藏
页码:393 / 408
页数:16
相关论文
共 50 条