Infinite, Sparse 3D Modelling Volumes

被引:0
|
作者
Funk, Eugen [1 ]
Boerner, Anko [1 ]
机构
[1] German Aerosp Ctr DLR, Inst Opt Sensor Syst, Dept Informat Proc Opt Syst, Berlin, Germany
关键词
D O I
10.1007/978-3-319-64870-5_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern research in mobile robotics proposes to combine localization and perception in order to recognize previously visited locations and thus to improve localization as well as the object recognition processes recursively. A crucial issue is to perform updates of the scene geometry when novel observations become available. The reason is that a practical application often requires a system to model large 3D environments at high resolution which exceeds the storage of the local memory. The underlying work presents an optimized volume data structure for infinite 3D environments which facilitates (i) successive world model updates without the need to recompute the full dataset, (ii) very fast in memory data access scheme enabling the integration of high resolution 3D sensors in real-time, (iii) efficient level-of-detail for visualization and coarse geometry updates. The technique is finally demonstrated on real world application scenarios which underpin the feasibility of the research outcomes.
引用
收藏
页码:593 / 605
页数:13
相关论文
共 50 条
  • [1] Denoising 3D Ultrasound Volumes Using Sparse Representation
    Kim, Dae Hoe
    Plataniotis, Konstantinos N.
    Ro, Yong Man
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 4034 - 4037
  • [2] Scene modelling from sparse 3D data
    Hilton, A
    IMAGE AND VISION COMPUTING, 2005, 23 (10) : 900 - 920
  • [3] CUBECOVER - Parameterization of 3D Volumes
    Nieser, M.
    Reitebuch, U.
    Polthier, K.
    COMPUTER GRAPHICS FORUM, 2011, 30 (05) : 1397 - 1406
  • [4] An approach for 3D volumes matching
    Di Bona, S
    Marini, M
    Salvetti, O
    APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING VI, 2001, 4305 : 73 - 80
  • [5] Iterative 3D surface modelling from a sparse set of matched feature points
    Xu, N
    Ahuja, N
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : 893 - 896
  • [6] Modelling of the trunk muscles: A 3D parameterized geometrical modelling and a 3D finite element modelling
    Maurel, N.
    De Guise, J.
    Dansereau, J.
    Yahia, L.H.
    Skali, W.
    Lavaste, F.
    Studies in Health Technology and Informatics, 1997, 37 : 213 - 215
  • [7] Modelling of the trunk muscles: A 3D parameterized geometrical modelling and a 3D finite element modelling
    Maurel, N
    deGuise, J
    Dansereau, J
    Yahia, LH
    Skalli, W
    Lavaste, F
    RESEARCH INTO SPINAL DEFORMITIES 1, 1997, 37 : 213 - 215
  • [8] 3D DATA PROCESSING FOR 3D FACE MODELLING
    Ignasiak, Krystian
    Morgos, Marcin
    Skarbek, Wladyslaw
    Tomaszewski, Michal
    COMPUTER VISION AND GRAPHICS (ICCVG 2004), 2006, 32 : 161 - 166
  • [9] Infilling of sparse 3D data for 3D focusing operator estimation
    van de Rijzen, MJ
    Gisolf, A
    Verschuur, DJ
    GEOPHYSICAL PROSPECTING, 2004, 52 (06) : 489 - 507
  • [10] 3D modelling and recognition
    Rodrigues, M.
    Robinson, A.
    Alboul, L.
    Brink, W.
    WSEAS Transactions on Information Science and Applications, 2006, 3 (11): : 2118 - 2122