A new approach to security-constrained optimal power flow analysis

被引:0
|
作者
Yan, P [1 ]
Sekar, A [1 ]
机构
[1] Tennessee Technol Univ, Ctr Elect Power, Cookeville, TN 38505 USA
关键词
security-constrained optimal power flow; linear programs and load flow;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Security-Constrained Optimal Power Flow (SCOPF) is becoming increasingly important in the new deregulated environment of electric power systems. This paper focuses on the development of an integrated approach to linear-programming-based (LP-based) solution of SCOPF. The power flow model includes bus voltage magnitudes and line power and reactive power flow directly in the formulation. This permits greater flexibility in incorporating voltage and line flow constraints. A six-bus system example illustrates the method. The results obtained show the power of the new approach.
引用
收藏
页码:1462 / 1467
页数:2
相关论文
共 50 条
  • [1] A New Iterative Approach to the Corrective Security-Constrained Optimal Power Flow Problem
    Capitanescu, Florin
    Wehenkel, Louis
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (04) : 1533 - 1541
  • [2] Flexible Security-Constrained Optimal Power Flow
    Thomas, James Jamal
    Grijalva, Santiago
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (03) : 1195 - 1202
  • [3] Probabilistic security-constrained AC optimal power flow
    Vrakopoulou, Maria
    Katsampani, Marina
    Margellos, Kostas
    Lygeros, John
    Andersson, Goran
    [J]. 2013 IEEE GRENOBLE POWERTECH (POWERTECH), 2013,
  • [4] Preventive Security-Constrained Optimal Power Flow with Probabilistic Guarantees
    Li, Hang
    Zhang, Zhe
    Yin, Xianggen
    Zhang, Buhan
    [J]. ENERGIES, 2020, 13 (09)
  • [5] Security-Constrained Optimal Power and Natural-Gas Flow
    Correa-Posada, Carlos M.
    Sanchez-Martin, Pedro
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (04) : 1780 - 1787
  • [6] Adversarially Robust Learning for Security-Constrained Optimal Power Flow
    Donti, Priya L.
    Agarwal, Aayushya
    Bedmutha, Neeraj Vijay
    Pileggi, Larry
    Kolter, J. Zico
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [7] A Comparative Study of Preventive Security-Constrained Optimal Power Flow
    Che, Liang
    Zhang, Xiaping
    Li, Zhiyi
    [J]. 2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [8] DeepOPF: A Deep Neural Network Approach for Security-Constrained DC Optimal Power Flow
    Pan, Xiang
    Zhao, Tianyu
    Chen, Minghua
    Zhang, Shengyu
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 1725 - 1735
  • [9] A Novel Iterative Contingency Filtering Approach to Corrective Security-Constrained Optimal Power Flow
    Jiang, Quanyuan
    Xu, Kai
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (03) : 1099 - 1109
  • [10] A SECURITY-CONSTRAINED DECOMPOSITION APPROACH TO OPTIMAL REACTIVE POWER PLANNING
    GOMEZ, T
    PEREZARRIAGA, IJ
    LUMBRERAS, J
    PARRA, VM
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1991, 6 (03) : 1069 - 1076