Variable selection using random forests

被引:69
|
作者
Sandri, Marco [1 ]
Zuccolotto, Paola [1 ]
机构
[1] Univ Brescia, Dipartimento Metodi Quantitat, cda S Chiara 50, I-25122 Brescia, Italy
关键词
D O I
10.1007/3-540-35978-8_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the main topic in the development of predictive models is the identification of variables which axe predictors of a given outcome. Automated model selection methods, such as backward or forward stepwise regression, are classical solutions to this problem, but are generally based on strong assumptions about the functional form of the model or the distribution of residuals. In this paper an alternative selection method, based on the technique of Random Forests, is proposed in the context of classification, with an application to a real dataset.
引用
收藏
页码:263 / +
页数:2
相关论文
共 50 条
  • [1] Variable selection using random forests
    Genuer, Robin
    Poggi, Jean-Michel
    Tuleau-Malot, Christine
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (14) : 2225 - 2236
  • [2] A new variable selection approach using Random Forests
    Hapfelmeier, A.
    Ulm, K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 60 : 50 - 69
  • [3] VSURF: An R Package for Variable Selection Using Random Forests
    Genuer, Robin
    Poggi, Jean-Michel
    Tuleau-Malot, Christine
    [J]. R JOURNAL, 2015, 7 (02): : 19 - 33
  • [4] Variable selection by Random Forests using data with missing values
    Hapfelmeier, A.
    Ulm, K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 80 : 129 - 139
  • [5] Variable selection using support vector regression and random forests: A comparative study
    Ben Ishak, Anis
    [J]. INTELLIGENT DATA ANALYSIS, 2016, 20 (01) : 83 - 104
  • [6] Dependence-biased clustering for variable selection with random forests
    Gazzola, Gianluca
    Jeong, Myong Kee
    [J]. PATTERN RECOGNITION, 2019, 96
  • [7] Unbiased split variable selection for random survival forests using maximally selected rank statistics
    Wright, Marvin N.
    Dankowski, Theresa
    Ziegler, Andreas
    [J]. STATISTICS IN MEDICINE, 2017, 36 (08) : 1272 - 1284
  • [8] A Systematic Approach for Variable Selection With Random Forests: Achieving Stable Variable Importance Values
    Behnamian, Amir
    Millard, Koreen
    Banks, Sarah N.
    White, Lori
    Richardson, Murray
    Pasher, Jon
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) : 1988 - 1992
  • [9] Comparison of Variable Selection Methods in Random Forests for Genomic Data Sets
    Szymczak, Silke
    Malley, James
    Franke, Andre
    [J]. HUMAN HEREDITY, 2013, 76 (02) : 88 - 89
  • [10] Evaluation of variable selection methods for random forests and omics data sets
    Degenhardt, Frauke
    Seifert, Stephan
    Szymczak, Silke
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) : 492 - 503