MOCVD grown MWIR HgCdTe detectors for high operation temperature conditions

被引:11
|
作者
Martyniuk, P. [1 ]
Kozniewski, A. [2 ]
Keblowski, A. [2 ]
Gawron, W. [1 ]
Rogalski, A. [1 ]
机构
[1] Mil Univ Technol, Inst Appl Phys, PL-00908 Warsaw, Poland
[2] Vigo Syst SA, PL-05850 Ozarow Mazowiecki, Poland
关键词
MWIR; SWIR; HgCdTe heterostructures; HOT detectors; SWIR; GAP;
D O I
10.2478/s11772-014-0186-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper reports on photoelectrical performance of the mid-wave infrared HgCdTe detector for high operating temperature condition. Detector structure was simulated with APSYS numerical platform by Crosslight Inc. The comprehensive analysis of the detector performance such as dark current, detectivity, time response vs. device architecture and applied bias has been performed. The N(+)pP(+)n(+) HgCdTe heterostructure photodiode operating in room temperature at a wavelength range of 2.6-3.6 mu m enabled to reach: detectivity similar to 8.7x10(10) cmHz(1/2)/W, responsivity similar to 1.72 A/W and time response similar to 145 ps (V = 200 mV).
引用
收藏
页码:118 / 126
页数:9
相关论文
共 50 条
  • [1] MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation
    Kopytko, Malgorzata
    Keblowski, Artur
    Gawron, Waldemar
    Martyniuk, Piotr
    Madejczyk, Pawel
    Jozwikowski, Krzysztof
    Kowalewski, Andrzej
    Markowska, Olga
    Rogalski, Antoni
    [J]. OPTICAL ENGINEERING, 2015, 54 (10)
  • [2] High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD
    Kopytko, M.
    Keblowski, A.
    Gawron, W.
    Madejczyk, P.
    Kowalewski, A.
    Jozwikowski, K.
    [J]. OPTO-ELECTRONICS REVIEW, 2013, 21 (04) : 402 - 405
  • [3] MOCVD grown HgCdTe p+BnN+ barrier detector for MWIR HOT operation
    Kopytko, M.
    Keblowski, A.
    Gawron, W.
    Martyniuk, P.
    Madejczyk, P.
    Jozwikowski, K.
    Markowska, O.
    Rogalski, A.
    [J]. INFRARED TECHNOLOGY AND APPLICATIONS XLI, 2015, 9451
  • [4] Generation-Recombination Effect in MWIR HgCdTe Barrier Detectors for High-Temperature Operation
    Kopytko, Malgorzata
    Jozwikowski, Krzysztof
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (07) : 2278 - 2284
  • [5] Higher Operating Temperature IR Detectors of the MOCVD Grown HgCdTe Heterostructures
    P. Madejczyk
    W. Gawron
    A. Kębłowski
    K. Mlynarczyk
    D. Stępień
    P. Martyniuk
    A. Rogalski
    J. Rutkowski
    J. Piotrowski
    [J]. Journal of Electronic Materials, 2020, 49 : 6908 - 6917
  • [6] MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors
    Madejczyk, P.
    Gawron, W.
    Martyniuk, P.
    Keblowski, A.
    Piotrowski, A.
    Pawluczyk, J.
    Pusz, W.
    Kowalewski, A.
    Piotrowski, J.
    Rogalski, A.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (10)
  • [7] Higher Operating Temperature IR Detectors of the MOCVD Grown HgCdTe Heterostructures
    Madejczyk, P.
    Gawron, W.
    Keblowski, A.
    Mlynarczyk, K.
    Stepien, D.
    Martyniuk, P.
    Rogalski, A.
    Rutkowski, J.
    Piotrowski, J.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (11) : 6908 - 6917
  • [8] HgCdTe high operation temperature infrared detectors
    Qin G.
    Ji F.
    Xia L.
    Chen W.
    Li D.
    Kong J.
    Li Y.
    Guo J.
    Yuan S.
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50 (04):
  • [9] Multiple Long Wavelength Infrared MOCVD Grown HgCdTe Photodetectors for High Temperature Conditions
    Gawron, Waldemar
    Damiecki, Adam
    Kozniewski, Andrzej
    Martyniuk, Piotr
    Stasiewicz, Karol A.
    Madejczyk, Pawel
    Rutkowski, Jaroslaw
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (04) : 4509 - 4516
  • [10] Numerical simulation of high-operating-temperature MWIR HgCdTe APD detectors
    Shen Chuan
    Yang Liao
    Guo Hui-Jun
    Yang Dan
    Chen Lu
    He Li
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2021, 40 (05) : 576 - 581