Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-cell Simulations

被引:7
|
作者
Gary, S. Peter [1 ]
Zhao, Yinjian [2 ]
Hughes, R. Scott [3 ]
Wang, Joseph [2 ]
Parashar, Tulasi N. [4 ]
机构
[1] Space Sci Inst, Boulder, CO 80301 USA
[2] Univ Southern Calif, Los Angeles, CA USA
[3] Jet Prop Lab, Pasadena, CA USA
[4] Univ Delaware, Newark, DE USA
来源
ASTROPHYSICAL JOURNAL | 2018年 / 859卷 / 02期
基金
美国国家科学基金会;
关键词
solar wind; turbulence; waves; WHISTLER TURBULENCE; STATISTICAL-MECHANICS; INFORMATION-THEORY; MAGNETIC-FIELD; ANISOTROPY; ELECTRON; RELAXATION; PARALLEL;
D O I
10.3847/1538-4357/aac022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at beta(i) = beta(e) = 0.25 and kinetic Alfven turbulence at beta(i) = beta(e) = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density epsilon(o) in the range 0 <= epsilon(o) <= 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as eo, consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfven turbulence than for whistler turbulence.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Particle-in-cell and Weak Turbulence Simulations of Plasma Emission
    Lee, Sang-Yun
    Ziebell, L. F.
    Yoon, P. H.
    Gaelzer, R.
    Lee, E. S.
    [J]. ASTROPHYSICAL JOURNAL, 2019, 871 (01):
  • [2] Kinetic Alfven Turbulence: Electron and Ion Heating by Particle-in-cell Simulations
    Hughes, R. Scott
    Gary, S. Peter
    Wang, Joseph
    Parashar, Tulasi N.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2017, 847 (02)
  • [3] Whistler turbulence: Particle-in-cell simulations
    Saito, Shinji
    Gary, S. Peter
    Li, Hui
    Narita, Yasuhito
    [J]. PHYSICS OF PLASMAS, 2008, 15 (10)
  • [4] Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma
    Dieckmann, ME
    Rowlands, G
    Eliasson, B
    Shukla, PK
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A12)
  • [5] The Fluid-Kinetic Particle-in-Cell method for plasma simulations
    Markidis, Stefano
    Henri, Pierre
    Lapenta, Giovanni
    Ronnmark, Kjell
    Hamrin, Maria
    Meliani, Zakaria
    Laure, Erwin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 271 : 415 - 429
  • [6] Fully kinetic, electromagnetic particle-in-cell simulations of plasma microturbulence
    Lewandowski, J. L. V.
    Zakharov, L. E.
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (04) : 684 - 722
  • [7] PARTICLE-IN-CELL (PIC) SIMULATIONS OF ELECTROMAGNETIC EMISSIONS FROM PLASMA TURBULENCE
    GOODMAN, S
    USUI, H
    MATSUMOTO, H
    [J]. PHYSICS OF PLASMAS, 1994, 1 (06) : 1765 - 1767
  • [8] Particle-in-cell simulations with kinetic electrons
    Lewandowski, JLV
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2004, 21 (02) : 173 - 192
  • [9] Particle-in-Cell Simulations with Kinetic Electrons
    J. L. V. Lewandowski
    [J]. Journal of Scientific Computing, 2004, 21 : 173 - 192
  • [10] An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality
    Degond, Pierre
    Deluzet, Fabrice
    Navoret, Laurent
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 343 (09) : 613 - 618