Algebraic structures and new solutions of the Yang-Baxter equation

被引:0
|
作者
McAnally, DS [1 ]
机构
[1] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
关键词
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Let G be a semisimple (or reductive) Lie algebra or a classical simple Lie superalgebra, then its universal enveloping algebra U(G) is a Hopf (super-)algebra under the standard (super-)cocommutative coproduct Delta(x) = x x 1 + 1 x x, x is an element of G. The Hopf (super-)algebra U(G) is triangular with R-matrix R = 1 x 1. There exist many other non-(super-)cocommutative coproducts on U(G) (and therefore many distinct Hopf (super-)algebra structures). These new Hopf (super-)algebras are quasitriangular, and with the new coproducts are associated new R-matrices. It is the aim of this paper to present a construction of new coproducts and a determination of the corresponding R-matrices.
引用
收藏
页码:428 / 432
页数:5
相关论文
共 50 条