Salient object detection via local saliency estimation and global homogeneity refinement

被引:31
|
作者
Yeh, Hsin-Ho [1 ]
Liu, Keng-Hao [1 ]
Chen, Chu-Song [1 ,2 ]
机构
[1] Acad Sinica, Inst Informat Sci, Taipei, Taiwan
[2] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
关键词
Salient object detection; Local contrast; Global homogeneity; VISUAL-ATTENTION; MODEL;
D O I
10.1016/j.patcog.2013.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new hybrid approach for detecting salient objects in an image. It consists of two processes: local saliency estimation and global-homogeneity refinement. We model the salient object detection problem as a region growing and competition process by propagating the influence of foreground and background seed-patches. First, the initial local saliency of each image patch is measured by fusing local contrasts with spatial priors, thereby the seed-patches of foreground and background are constructed. Later, the global-homogeneous information is utilized to refine the saliency results by evaluating the ratio of the foreground and background likelihoods propagated from the seed-patches. Despite the idea is simple, our method can effectively achieve consistent performance for detecting object saliency. The experimental results demonstrate that our proposed method can accomplish remarkable precision and recall rates with good computational efficiency. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1740 / 1750
页数:11
相关论文
共 50 条
  • [1] Salient object detection via reliable boundary seeds and saliency refinement
    Wu, Xiyin
    Ma, Xiaodi
    Zhang, Jinxia
    Jin, Zhong
    [J]. IET COMPUTER VISION, 2019, 13 (03) : 302 - 311
  • [2] Salient object detection via boosting object-level distinctiveness and saliency refinement
    Yan, Xiaoyun
    Wang, Yuehuan
    Song, Qiong
    Dai, Kaiheng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 48 : 224 - 237
  • [3] Multi-scale salient object detection using graph ranking and global-local saliency refinement
    Filali, Idir
    Allili, Mohand Said
    Benblidia, Nadjia
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2016, 47 : 380 - 401
  • [4] Salient Object Detection for Searched Web Images via Global Saliency
    Wang, Peng
    Wang, Jingdong
    Zeng, Gang
    Feng, Jie
    Zha, Hongbin
    Li, Shipeng
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3194 - 3201
  • [5] Salient object detection via global and local cues
    Tong, Na
    Lu, Huchuan
    Zhang, Ying
    Ruan, Xiang
    [J]. PATTERN RECOGNITION, 2015, 48 (10) : 3258 - 3267
  • [6] Salient Object Detection via Saliency Spread
    Xiang, Dao
    Wang, Zilei
    [J]. COMPUTER VISION - ACCV 2014 WORKSHOPS, PT I, 2015, 9008 : 457 - 472
  • [7] Co-Saliency Detection via Local Prediction and Global Refinement
    Wang, Jun
    Hu, Lei
    Li, Ning
    Tian, Chang
    Zhang, Zhaofeng
    Zeng, Mingyong
    Luo, Zhangkai
    Guan, Huaping
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (04) : 654 - 664
  • [8] Salient object detection via multiple saliency weights
    Weimin Tan
    Bo Yan
    [J]. Multimedia Tools and Applications, 2017, 76 : 25091 - 25107
  • [9] Salient object detection via saliency bias and diffusion
    Dao Xiang
    Zilei Wang
    [J]. Multimedia Tools and Applications, 2017, 76 : 6209 - 6228
  • [10] Salient object detection via saliency bias and diffusion
    Xiang, Dao
    Wang, Zilei
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (05) : 6209 - 6228