Optimized correlations inspired by perturbation theory

被引:5
|
作者
Panholzer, Martin [1 ,2 ]
Hobbiger, Raphael [1 ]
Boehm, Helga [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Theoret Phys, Linz, Austria
[2] European Theoret Spect Facil, Rome, Italy
基金
奥地利科学基金会;
关键词
HYPERNETTED-CHAIN CALCULATIONS; ELECTRON-GAS; OPTICAL-SPECTRA; EXCITATIONS;
D O I
10.1103/PhysRevB.99.195156
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the accuracy of analytical wave-function-based many-body methods derived by energy minimization of a Jastrow-Feenberg ansatz for electrons (the "Fermi hypernetted chain/Euler Lagrange" approach). Approximations to avoid the complexity of the fermion problem are chosen to parallel successful boson theories and to be computationally efficient. For the three-dimensional homogeneous electron gas, we calculate the correlation energy, the pair distribution function, and the static structure function in comparison with simulation results. We also present a variant of theory which is interpreted as an approximate, self-consistent sum of ladder and ring diagrams of perturbation theory. The theory performs particularly well in the highly dilute density regime.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] OPTIMIZED PERTURBATION-THEORY
    STEVENSON, PM
    PHYSICAL REVIEW D, 1981, 23 (12) : 2916 - 2944
  • [2] Optimized perturbation theory at finite temperature
    Chiku, S
    Hatsuda, T
    PHYSICAL REVIEW D, 1998, 58 (07)
  • [3] Bulk Viscosity in Optimized Perturbation Theory
    Farias, R. L. S.
    Teixeira, D. L., Jr.
    Ramos, Rudnei O.
    XI HADRON PHYSICS, 2010, 1296 : 406 - +
  • [4] Regularizing orbital optimized perturbation theory
    Stueck, David
    Head-Gordon, Martin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [5] OPTIMIZED PERTURBATION-THEORY IN QUANTUM ELECTRODYNAMICS
    KUBO, J
    SAKAKIBARA, S
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1982, 14 (04): : 345 - 349
  • [6] Evaluating critical exponents in the optimized perturbation theory
    Pinto, MB
    Ramos, RO
    Sena, PJ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (3-4) : 570 - 582
  • [7] Renormalization group optimized perturbation theory at finite temperatures
    Kneur, Jean-Loeic
    Pinto, Marcus B.
    PHYSICAL REVIEW D, 2015, 92 (11):
  • [8] Optimized partitioning in Rayleigh-Schrodinger perturbation theory
    Szabados, A
    Surján, PR
    CHEMICAL PHYSICS LETTERS, 1999, 308 (3-4) : 303 - 309
  • [9] Optimized partitioning in perturbation theory:: Comparison to related approaches
    Surján, PR
    Szabados, A
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (10): : 4438 - 4446
  • [10] An optimized perturbation expansion for a global O(2) theory
    Evans, TS
    Ivin, M
    Möbius, M
    NUCLEAR PHYSICS B, 2000, 577 (1-2) : 325 - 340