Standard model anomalies in curved space-time with torsion

被引:25
|
作者
Dobado, A
Maroto, AL
机构
[1] Departamento de Física Teórica, Universidad Complutense de Madrid, Madrid
关键词
D O I
10.1103/PhysRevD.54.5185
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the Fujikawa and the heat-kernel methods we make a complete and detailed computation of the global, gauge, and gravitational anomalies in the standard model defined on a curved space-time with torsion. We find new contributions coming from the curvature and the torsion to the leptonic number anomaly (so that B-L is not conserved anymore) to the U(1)(Y) gauge and to the mixed U(1)(Y)-gravitational anomalies. However, neither gauge nor gravitational new anomaly cancellation conditions for the hypercharges arise.
引用
收藏
页码:5185 / 5194
页数:10
相关论文
共 50 条
  • [1] CONFORMAL ANOMALIES IN CURVED SPACE-TIME
    DUNCAN, A
    [J]. PHYSICS LETTERS B, 1977, 66 (02) : 170 - 172
  • [2] RENORMALIZATION OF MODEL OF QUANTUM-THEORY OF FIELD IN A CURVED SPACE-TIME WITH TORSION
    BUKHBINDER, IL
    SHAPIRO, IL
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1985, 28 (08): : 94 - 100
  • [3] THE AXIAL MODEL IN CURVED SPACE-TIME
    BARCELOSNETO, J
    FARINA, C
    VAIDYA, AN
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1986, 96 (02): : 175 - 189
  • [4] SCHWINGER MODEL IN CURVED SPACE-TIME
    GASS, R
    [J]. PHYSICAL REVIEW D, 1983, 27 (12): : 2893 - 2905
  • [5] SOME REMARKS ON THE EFFECTIVE ACTION IN CURVED SPACE-TIME WITH TORSION
    ODINTSOV, SD
    [J]. ACTA PHYSICA POLONICA B, 1990, 21 (11): : 863 - 870
  • [6] TORSION-FREE WORLD LINES IN CURVED SPACE-TIME
    KARLOV, L
    RINDLER, W
    [J]. PHYSICAL REVIEW D, 1971, 3 (04): : 1035 - &
  • [7] CHIRAL SCHWINGER MODEL IN CURVED SPACE-TIME
    BARCELOSNETO, J
    DAS, A
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1986, 32 (04): : 527 - 530
  • [8] LAGRANGIAN FORMULATION OF A SPINNING TEST PARTICLE IN A CURVED SPACE-TIME WITH TORSION
    COGNOLA, G
    SOLDATI, R
    VANZO, L
    ZERBINI, S
    [J]. PHYSICAL REVIEW D, 1982, 25 (12): : 3109 - 3116
  • [9] Curved space, curved time, and curved space-time in Schwarzschild geodetic geometry
    Rafael T. Eufrasio
    Nicholas A. Mecholsky
    Lorenzo Resca
    [J]. General Relativity and Gravitation, 2018, 50
  • [10] Curved space, curved time, and curved space-time in Schwarzschild geodetic geometry
    Eufrasio, Rafael T.
    Mecholsky, Nicholas A.
    Resca, Lorenzo
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2018, 50 (12)