Automatic segmentation of the aortic dissection membrane from 3D CTA images

被引:0
|
作者
Kovacs, Tamas [1 ]
Cattin, Philippe
Alkadhi, Hatem
Wildermuth, Simon
Szekely, Gabor
机构
[1] ETH, Comp Vis Grp, CH-8092 Zurich, Switzerland
[2] Univ Zurich Hosp, Inst Diagnost Radiol, CH-8092 Zurich, Switzerland
[3] Kantonsspital, Inst Radiol, CH-9000 St Gallen, Switzerland
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Acute aortic dissection is a life-threatening condition and must be diagnosed and treated promptly. For treatment planning the reliable identification of the true and false lumen is crucial. However, a fully automatic Computer Aided Diagnosis system capable to display the different lumens in an easily comprehensible and timely manner is still not available. In this paper we present a method that segments the entire aorta and then identifies the two lumens separated by the dissection membrane. The algorithm misdetected part of the membrane in only one of the 15 cases tested, where the aorta has not been significantly altered by the presence of aneurisms.
引用
收藏
页码:317 / 324
页数:8
相关论文
共 50 条
  • [1] AUTOMATIC DETECTION OF SUPRAAORTIC BRANCHES AND MODEL-BASED SEGMENTATION OF THE AORTIC ARCH FROM 3D CTA IMAGES
    Biesdorf, A.
    Woerz, S.
    von Tengg-Kobligk, H.
    Rohr, K.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 486 - +
  • [2] Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning
    Cao, Long
    Shi, Ruiqiong
    Ge, Yangyang
    Xing, Lei
    Zuo, Panli
    Jia, Yan
    Liu, Jie
    He, Yuan
    Wang, Xinhao
    Luan, Shaoliang
    Chai, Xiangfei
    Guo, Wei
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
  • [3] Automatic Collateral Scoring From 3D CTA Images
    Su, Jiahang
    Wolff, Lennard
    van Es, Adriaan C. G. M.
    van Zwam, Wim
    Majoie, Charles
    Dippel, Diederik W. J.
    van der Lugt, Aad
    Niessen, Wiro J.
    van Walsum, Theo
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) : 2190 - 2200
  • [4] 3D segmentation of the true and false lumens on CT aortic dissection images
    Fetnaci, Nawel
    Lubniewski, Pawel
    Miguel, Bruno
    Lohou, Christophe
    THREE-DIMENSIONAL IMAGE PROCESSING (3DIP) AND APPLICATIONS 2013, 2013, 8650
  • [5] A Segmentation Network Based on 3D U-Net for Automatic Renal Cancer Structure Segmentation in CTA Images
    Weng, Xin
    Hu, Zuquan
    Yang, Fan
    LESION SEGMENTATION IN SURGICAL AND DIAGNOSTIC APPLICATIONS, MICCAI 2022, CURIOUS 2022, KIPA 2022, MELA 2022, 2023, 13648 : 3 - 8
  • [6] Novel Full-Automatic Approach for Segmentation of Epiretinal Membrane from 3D OCT Images
    Stankiewicz, Agnieszka
    Marciniak, Tomasz
    Dabrowski, Adam
    Stopa, Marcin
    Rakowicz, Piotr
    Marciniak, Elzbieta
    2017 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA 2017), 2017, : 100 - 105
  • [7] Coarse-to-fine multiplanar D-SEA UNet for automatic 3D carotid segmentation in CTA images
    Junjie Wang
    Yuanyuan Yu
    Rongyao Yan
    Jie Liu
    Hao Wu
    Daoying Geng
    Zekuan Yu
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 1727 - 1736
  • [8] Coarse-to-fine multiplanar D-SEA UNet for automatic 3D carotid segmentation in CTA images
    Wang, Junjie
    Yu, Yuanyuan
    Yan, Rongyao
    Liu, Jie
    Wu, Hao
    Geng, Daoying
    Yu, Zekuan
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (10) : 1727 - 1736
  • [9] Automatic 3D Aorta Segmentation in CT Images
    Duan, Xiaojie
    Zhang, Meisong
    Wang, Jianming
    Chen, Qingliang
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 49 - 54
  • [10] Automatic needle segmentation in 3D ultrasound images
    Ding, MY
    Cardinal, HN
    Guan, WG
    Fenster, A
    MEDICAL IMAGING 2002: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND DISPLAY, 2002, 4681 : 65 - 76