Estimating multiple treatment effects using two-phase semiparametric regression estimators

被引:1
|
作者
Yu, Cindy [1 ]
Legg, Jason [2 ]
Liu, Bin [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] Amgen Inc, Global Biostat Sci, Newbury Pk, CA 91320 USA
来源
关键词
Propensity score; semiparametric; treatment effects; two-phase regression estimator; CAUSAL INFERENCE; PROPENSITY SCORE;
D O I
10.1214/13-EJS856
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a semiparametric two-phase regression estimator with a semiparametric generalized propensity score estimator for estimating average treatment effects in the presence of the first-phase sampling. The proposed estimator can be easily extended to any number of treatments and does not rely on a prespecified form of the response or outcome functions. The proposed estimator is shown to reduce bias found in standard estimators that ignore the first-phase sample design, and can have improved efficiency compared to the inverse propensity weighted estimators. Results from simulation studies and from an empirical study of NHANES are presented.
引用
收藏
页码:2737 / 2761
页数:25
相关论文
共 50 条
  • [1] IMPUTATION USING REGRESSION ESTIMATORS FOR ESTIMATING POPULATION MEAN IN TWO-PHASE SAMPLING
    Thakur, Narendra Singh
    Yadav, Kalpana
    Pathak, Sharad
    [J]. JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2012, 5 (02): : 21 - 31
  • [2] Consistency of semiparametric maximum likelihood estimators for two-phase sampling
    van der Vaart, A
    Wellner, JA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (02): : 269 - 288
  • [3] Asymptotics of M-estimators in two-phase linear regression models
    Koul, HL
    Qian, LF
    Surgailis, D
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 103 (01) : 123 - 154
  • [4] A Class of Exponential Regression Type Estimators for Population Variance in Two-Phase Sampling
    A. Chatterjee
    G. N. Singh
    A. Bandyopadhyay
    [J]. Journal of Statistical Theory and Applications, 2017, 16 (4): : 565 - 575
  • [5] Semiparametric multiple kernel estimators and model diagnostics for count regression functions
    Djerroud, Lamia
    Kiesse, Tristan Senga
    Adjabi, Smail
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (09) : 2131 - 2157
  • [6] Weighted likelihood for semiparametric models and two-phase stratified samples, with application to cox regression
    Breslow, Norman E.
    Wellner, Jon A.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (01) : 86 - 102
  • [7] Large sample theory for semiparametric regression models with two-phase, outcome dependent sampling
    Breslow, N
    McNeney, B
    Wellner, JA
    [J]. ANNALS OF STATISTICS, 2003, 31 (04): : 1110 - 1139
  • [8] Estimating marginal treatment effects using parametric and semiparametric methods
    Brave, Scott
    Walstrum, Thomas
    [J]. STATA JOURNAL, 2014, 14 (01): : 191 - 217
  • [9] Estimating covariance matrices using estimating functions in nonparametric and semiparametric regression
    Carroll, RJ
    Iturria, SJ
    Gutierrez, RG
    [J]. SELECTED PROCEEDINGS OF THE SYMPOSIUM ON ESTIMATING FUNCTIONS, 1997, 32 : 399 - 404
  • [10] GENERALIZED REGRESSION-CUM-RATIO ESTIMATORS FOR TWO-PHASE SAMPLING USING MULTI-AUXILIARY VARIABLES
    Ahmad, Zahoor
    Hanif, Muhammad
    Ahmad, Munir
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (02): : 93 - 106