Secondary electron emission from diamond surfaces

被引:95
|
作者
Shih, A
Yater, J
Pehrsson, P
Butler, J
Hor, C
Abrams, R
机构
[1] Naval Research Laboratory, Washington
关键词
D O I
10.1063/1.365990
中图分类号
O59 [应用物理学];
学科分类号
摘要
Diamond exhibits very high, but widely varying, secondary-electron yields. In this study, we identified some of the factors that govern the secondary-electron yield from diamond by performing comparative studies on polycrystalline films with different dopants (boron or nitrogen), doping concentrations, and surface terminations. The total electron yield as a function of incident-electron energy and the energy distribution of the emitted secondary electrons showed that both bulk properties and surface chemistry are important in the secondary-electron-emission process. The dopant type and doping concentration affect the transport of secondary electrons through the sample bulk, as well as the electrical conductivity needed to replenish the emitted electrons. Surface adsorbates affect the electron transmission at the surface-vacuum interface because they change the vacuum barrier height. The presence of hydrogen termination at the diamond surface, the extent of the hydrogen coverage, and the coadsorption of hydrocarbon-containing species all correlated with significant yield changes. Extraordinarily high secondary-electron yields (as high as 84) were observed on B-doped diamond samples saturated with surface hydrogen. The secondary electrons were predominantly low-energy quasithermalized electrons residing in the bottom of the diamond conduction band. Two key reasons for the unusually high yields are (1) the wide band gap which allows the low-energy secondary electrons to have long mean-free paths, and (2) the very low or even negative electron affinity at the surface which permits the low-energy quasithermalized electrons that reach the surface to escape into vacuum.
引用
收藏
页码:1860 / 1867
页数:8
相关论文
共 50 条
  • [1] Secondary electron emission from diamond surfaces
    [J]. J Appl Phys, 4 (1860):
  • [2] Secondary electron emission studies of diamond surfaces
    Shih, A
    Yater, J
    Pehrsson, P
    Butler, J
    Hor, C
    Abrams, R
    [J]. DIAMOND FOR ELECTRONIC APPLICATIONS, 1996, 416 : 461 - 466
  • [3] SECONDARY ELECTRON EMISSION FROM DIAMOND
    JOHNSON, JB
    [J]. PHYSICAL REVIEW, 1953, 92 (03): : 843 - 843
  • [4] Secondary electron emission from textured surfaces
    Huerta, C. E.
    Patino, M. I.
    Wirz, R. E.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (14)
  • [5] Electron emission measurements from CVD diamond surfaces
    Dept. of Mat. Sci. and Engineering, North Carolina State University, Raleigh, NC 27695-7919, United States
    不详
    [J]. Diamond Relat. Mat., 6-8 (802-806):
  • [6] Environmental effect on the electron emission from diamond surfaces
    Zhirnov, VV
    Liu, J
    Wojak, GJ
    Cuomo, JJ
    Hren, JJ
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (03): : 1188 - 1193
  • [7] Electron emission measurements from CVD diamond surfaces
    Bozeman, SP
    Baumann, PK
    Ward, BL
    Powers, MJ
    Cuomo, JJ
    Nemanich, RJ
    Dreifus, DL
    [J]. DIAMOND AND RELATED MATERIALS, 1996, 5 (6-8) : 802 - 806
  • [8] Angular-resolved study of secondary-electron emission from NEA diamond surfaces
    Luebbe, M.
    Evans, D.A.
    Kampen, T.U.
    Okano, K.
    Zahn, D.R.T.
    [J]. Diamond and Related Materials, 1999, 8 (08): : 1485 - 1489
  • [9] Angular-resolved study of secondary-electron emission from NEA diamond surfaces
    Lübbe, M
    Evans, DA
    Kampen, TU
    Okano, K
    Zahn, DRT
    [J]. DIAMOND AND RELATED MATERIALS, 1999, 8 (8-9) : 1485 - 1489
  • [10] The effect of temperature on the secondary electron emission yield from single crystal and polycrystalline diamond surfaces
    Stacey, A.
    Prawer, S.
    Rubanov, S.
    Ahkvlediani, R.
    Michaelson, Sh.
    Hoffman, A.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (26)