Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana

被引:53
|
作者
Wang, Junbin [1 ,2 ]
Ding, Bo [1 ]
Guo, Yaolin [1 ]
Li, Ming [1 ]
Chen, Shuaijun [1 ]
Huang, Guozhong [1 ]
Xie, Xiaodong [1 ]
机构
[1] Tianjin Agr Univ, Tianjin Bristol Res Ctr Effects Environm Change C, Tianjin 300384, Peoples R China
[2] Tianjin Agr Univ, Coll Basic Sci, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Arabidopsis; Inducible overexpression system; Phospholipase D; Stress tolerance; Triticum aestivum; PHOSPHATIDIC-ACID; ABSCISIC-ACID; SIGNAL-TRANSDUCTION; D-DELTA; SALT STRESS; WATER-LOSS; EXPRESSION; RESPONSES; SALINITY; PATHWAY;
D O I
10.1007/s00425-014-2066-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phospholipase D (PLD) is crucial for plant responses to stress and signal transduction, however, the regulatory mechanism of PLD in abiotic stress is not completely understood; especially, in crops. In this study, we isolated a gene, TaPLD alpha, from common wheat (Triticum aestivum L.). Analysis of the amino acid sequence of TaPLD alpha revealed a highly conserved C2 domain and two characteristic HKD motifs, which is similar to other known PLD family genes. Further characterization revealed that TaPLD alpha expressed differentially in various organs, such as roots, stems, leaves and spikelets of wheat. After treatment with abscisic acid (ABA), methyl jasmonate, dehydration, polyethylene glycol and NaCl, the expression of TaPLD alpha was up-regulated in shoots. Subsequently, we generated TaPLD alpha-overexpressing transgenic Arabidopsis lines under the control of the dexamethasone-inducible 35S promoter. The overexpression of TaPLD alpha in Arabidopsis resulted in significantly enhanced tolerance to drought, as shown by reduced chlorosis and leaf water loss, higher relative water content and lower relative electrolyte leakage than the wild type. Moreover, the TaPLD alpha-overexpressing plants exhibited longer roots in response to mannitol treatment. In addition, the seeds of TaPLD alpha-overexpressing plants showed hypersensitivity to ABA and osmotic stress. Under dehydration, the expression of several stress-related genes, RD29A, RD29B, KIN1 and RAB18, was up-regulated to a higher level in TaPLD alpha-overexpressing plants than in wild type. Taken together, our results indicated that TaPLD alpha can enhance tolerance to drought and osmotic stress in Arabidopsis and represents a potential candidate gene to enhance stress tolerance in crops.
引用
收藏
页码:103 / 115
页数:13
相关论文
共 50 条
  • [1] Overexpression of a wheat phospholipase D gene, TaPLDα, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana
    Junbin Wang
    Bo Ding
    Yaolin Guo
    Ming Li
    Shuaijun Chen
    Guozhong Huang
    Xiaodong Xie
    Planta, 2014, 240 : 103 - 115
  • [2] Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana
    Brini, Faical
    Hanin, Moez
    Lumbreras, Victoria
    Amara, Imen
    Khoudi, Habib
    Hassairi, Afif
    Pages, Montserrat
    Masmoudi, Khaled
    PLANT CELL REPORTS, 2007, 26 (11) : 2017 - 2026
  • [3] Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana
    Faïçal Brini
    Moez Hanin
    Victoria Lumbreras
    Imen Amara
    Habib Khoudi
    Afif Hassairi
    Montserrat Pagès
    Khaled Masmoudi
    Plant Cell Reports, 2007, 26 : 2017 - 2026
  • [4] Overexpression of StERECTA enhances drought tolerance in Arabidopsis thaliana
    Liu, Xuan
    Yang, Wenjing
    Zhang, Li
    Nie, Fengjie
    Gong, Lei
    Zhang, Hongxia
    JOURNAL OF PLANT PHYSIOLOGY, 2024, 303
  • [5] Overexpression of wheat TaNCED gene in Arabidopsis enhances tolerance to drought stress and delays seed germination
    Tong, S. -M.
    Xi, H. -X.
    Ai, K. -J.
    Hou, H. -S
    BIOLOGIA PLANTARUM, 2017, 61 (01) : 64 - 72
  • [6] Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress
    Park, Hee-Yeon
    Seok, Hye-Yeon
    Park, Bo-Kyung
    Kim, Sun-Ho
    Goh, Chang-Hyo
    Lee, Byeong-ha
    Lee, Choon-Hwan
    Moon, Yong-Hwan
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 375 (01) : 80 - 85
  • [7] Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa
    Zhang TingTing
    Song YunZhi
    Liu YuDong
    Guo XingQi
    Zhu ChangXiang
    Wen FuJiang
    CHINESE SCIENCE BULLETIN, 2008, 53 (23): : 3656 - 3665
  • [9] Overexpression of the Wheat TaPsb28 Gene Enhances Drought Tolerance in Transgenic Arabidopsis
    Wang, Yuexia
    Zhang, Menghan
    Li, Xiaoyan
    Zhou, Ruixiang
    Xue, Xinyu
    Zhang, Jing
    Liu, Nana
    Xue, Ruili
    Qi, Xueli
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [10] The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses
    Hermosa, Rosa
    Botella, Leticia
    Keck, Emma
    Angel Jimenez, Jesus
    Montero-Barrientos, Marta
    Arbona, Vicent
    Gomez-Cadenas, Aurelio
    Monte, Enrique
    Nicolas, Carlos
    JOURNAL OF PLANT PHYSIOLOGY, 2011, 168 (11) : 1295 - 1302