Efficient Sparse Least Squares Support Vector Machines for Regression

被引:0
|
作者
Si Gangquan [1 ]
Shi Jianquan [1 ]
Guo Zhang [1 ]
Zhao Weili [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi Provinc, Peoples R China
关键词
least squares support vector machines; sparse; active learning; K-means clustering;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To solve the sparseness problem of least squares support vector machine (LSSVM) in learning process, a training algorithm of LSSVM based on active learning is investigated. In the first stage of the algorithm, in order to solve the problem of a large number of similar training data samples, Support samples are selected by K-means clustering method. The second stage, this algorithm obtains a model using LSSVM and conducts function estimation of the all samples, calculating the error between the estimation values and the original samples, sorting support samples and selecting the best sample. Then the selected sample is added into training set to obtain new model. And the processes are repeated until the predetermined performance requirements are achieved, thus the sparse LSSVM model is obtained. The simulation on sinc function indicates that the proposed method performs more effectively than Suykens standard sparse method for removing the redundant support vector with better sparseness and robustness. The experiments on motorcycle dataset of the UCI indicate that the proposed algorithm can solve the problem of heteroscedasticity in some degree.
引用
收藏
页码:5173 / 5178
页数:6
相关论文
共 50 条
  • [1] Efficient sparse least squares support vector machines for pattern classification
    Tian, Yingjie
    Ju, Xuchan
    Qi, Zhiquan
    Shi, Yong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (10) : 1935 - 1947
  • [2] An Improved Active Learning Sparse Least Squares Support Vector Machines for Regression
    Si Gangquan
    Shi Jianquan
    Guo Zhang
    Gao Hong
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 4558 - 4562
  • [3] A Novel Sparse Least Squares Support Vector Machines
    Xia, Xiao-Lei
    Jiao, Weidong
    Li, Kang
    Irwin, George
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [4] Sparse Least Squares Support Vector Regression via Multiresponse Sparse Regression
    Vieira, David Clifte da S.
    Rocha Neto, Ajalmar R.
    Rodrigues, Antonio Wendell de O.
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3218 - 3225
  • [5] A hybrid approach for sparse Least Squares Support Vector Machines
    de Carvalho, BPR
    Lacerda, WS
    Braga, AP
    [J]. HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, : 323 - 328
  • [6] A hybrid approach for sparse least squares support vector machines
    [J]. De Carvalho, B.P.R. (bernardo@vettalabs.com), Operador Nacional do Sistema Eletrico - ONS; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (Inst. of Elec. and Elec. Eng. Computer Society, 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States):
  • [7] Active Learning for Sparse Least Squares Support Vector Machines
    Zou, Junjie
    Yu, Zhengtao
    Zong, Huanyun
    Zhao, Xing
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 672 - +
  • [8] Improved sparse least-squares support vector machines
    Cawley, GC
    Talbot, NLC
    [J]. NEUROCOMPUTING, 2002, 48 : 1025 - 1031
  • [9] Sparse approximation using least squares support vector machines
    Suykens, JAK
    Lukas, L
    Vandewalle, J
    [J]. ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL II: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 757 - 760
  • [10] A sparse method for least squares twin support vector regression
    Huang, Huajuan
    Wei, Xiuxi
    Zhou, Yongquan
    [J]. NEUROCOMPUTING, 2016, 211 : 150 - 158