Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides

被引:59
|
作者
De Bruyn, Frederik [1 ]
Van Brempt, Maarten [1 ]
Maertens, Jo [1 ]
Van Bellegem, Wouter [1 ]
Duchi, Dries [1 ]
De Mey, Marjan [1 ]
机构
[1] Univ Ghent, Ctr Expertise Ind Biotechnol & Biocatalysis, Dept Biochem & Microbial Technol, B-9000 Ghent, Belgium
来源
MICROBIAL CELL FACTORIES | 2015年 / 14卷
关键词
Galactosylation; Rhamnosylation; Glycosylation; Hyperoside; Quercitrin; Escherichia coli W; Metabolic engineering; Flavonoids; PLANT-CELL CULTURES; IN-VITRO; ANTIINFLAMMATORY ACTIVITY; REGIOSELECTIVE SYNTHESIS; HYPERICUM-PERFORATUM; MAJOR DETERMINANT; OXIDATIVE DAMAGE; SUGAR MOIETY; FLAVONOIDS; HYPEROSIDE;
D O I
10.1186/s12934-015-0326-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Flavonoids are bio-active specialized plant metabolites which mainly occur as different glycosides. Due to the increasing market demand, various biotechnological approaches have been developed which use Escherichia coli as a microbial catalyst for the stereospecific glycosylation of flavonoids. Despite these efforts, most processes still display low production rates and titers, which render them unsuitable for large-scale applications. Results: In this contribution, we expanded a previously developed in vivo glucosylation platform in E. coli W, into an efficient system for selective galactosylation and rhamnosylation. The rational of the novel metabolic engineering strategy constitutes of the introduction of an alternative sucrose metabolism in the form of a sucrose phosphorylase, which cleaves sucrose into fructose and glucose 1-phosphate as precursor for UDP-glucose. To preserve these intermediates for glycosylation purposes, metabolization reactions were knocked-out. Due to the pivotal role of UDP-glucose, overexpression of the interconverting enzymes galE and MUM4 ensured the formation of both UDP-galactose and UDP-rhamnose, respectively. By additionally supplying exogenously fed quercetin and overexpressing a flavonol galactosyltransferase (F3GT) or a rhamnosyltransferase (RhaGT), 0.94 g/L hyperoside (quercetin 3-O-galactoside) and 1.12 g/L quercitrin (quercetin 3-O-rhamnoside) could be produced, respectively. In addition, both strains showed activity towards other promising dietary flavonols like kaempferol, fisetin, morin and myricetin. Conclusions: Two E. coli W mutants were engineered that could effectively produce the bio-active flavonol glycosides hyperoside and quercitrin starting from the cheap substrates sucrose and quercetin. This novel fermentation-based glycosylation strategy will allow the economically viable production of various glycosides.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides
    Frederik De Bruyn
    Maarten Van Brempt
    Jo Maertens
    Wouter Van Bellegem
    Dries Duchi
    Marjan De Mey
    Microbial Cell Factories, 14
  • [2] Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production
    Chen, Xianzhong
    Zhou, Li
    Tian, Kangming
    Kumar, Ashwani
    Singh, Suren
    Prior, Bernard A.
    Wang, Zhengxiang
    BIOTECHNOLOGY ADVANCES, 2013, 31 (08) : 1200 - 1223
  • [3] Production of a Novel Quercetin Glycoside through Metabolic Engineering of Escherichia coli
    Yoon, Jeong-A
    Kim, Bong-Gyu
    Lee, Woo Ju
    Lim, Yoongho
    Chong, Youhoon
    Ahn, Joong-Hoon
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (12) : 4256 - 4262
  • [4] Metabolic engineering of Escherichia coli to develop a platform for the production of aromatic compounds and the derivatives
    Noda, S.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 18 - 19
  • [5] Systematic metabolic engineering for improvement of glycosylation efficiency in Escherichia coli
    Pandhal, Jagroop
    Desai, Pratik
    Walpole, Caroline
    Doroudi, Leyla
    Malyshev, Dmitry
    Wright, Phillip C.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 419 (03) : 472 - 476
  • [6] Metabolic engineering of Escherichia coli for α-farnesene production
    Wang, Chonglong
    Yoon, Sang-Hwal
    Jang, Hui-Jeong
    Chung, Young-Ryun
    Kim, Jae-Yean
    Choi, Eui-Sung
    Kim, Seon-Won
    METABOLIC ENGINEERING, 2011, 13 (06) : 648 - 655
  • [7] Metabolic engineering of Escherichia coli for production of valerenadiene
    Nybo, S. Eric
    Saunders, Jacqueline
    McCormick, Sean P.
    JOURNAL OF BIOTECHNOLOGY, 2017, 262 : 60 - 66
  • [8] Metabolic engineering of Escherichia coli for the production of riboflavin
    Zhenquan Lin
    Zhibo Xu
    Yifan Li
    Zhiwen Wang
    Tao Chen
    Xueming Zhao
    Microbial Cell Factories, 13
  • [9] Metabolic engineering of Escherichia coli for the production of cinnamaldehyde
    Hyun Bae Bang
    Yoon Hyeok Lee
    Sun Chang Kim
    Chang Keun Sung
    Ki Jun Jeong
    Microbial Cell Factories, 15
  • [10] Metabolic engineering of itaconate production in Escherichia coli
    Vuoristo, Kiira S.
    Mars, Astrid E.
    Sangra, Jose Vidal
    Springer, Jan
    Eggink, Gerrit
    Sanders, Johan P. M.
    Weusthuis, Ruud A.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (01) : 221 - 228