The Riemann-Hilbert correspondence for unit F-crystals

被引:0
|
作者
Emerton, M
Kisin, M
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
Riemann-Hilbert correspondence; L-functions; D-modules; F-crystal;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q denote the finite field of order q (a power of a prime p), let X be a smooth scheme over a field k containing F-q, and let Lambda be a finite F-q-algebra. We study the relationship between constructible Lambda-sheaves on the etale site of X, and a certain class of quasi-coherent O(X)circle times(Fq) Lambda-modules equipped with a "unit" Frobenius structure. We show that the two corresponding derived categories are anti-equivalent as triangulated categories, and that this anti-equivalence is compatible with direct and inverse images, tensor products, and certain other operations. We also obtain analogous results relating complexes of constructible Z/p(n) Z-sheaves on smooth W-n(k)-schemes, and complexes of Berthelot's arithmetic D-modules, equipped with a unit Frobenius.
引用
收藏
页码:1 / +
页数:246
相关论文
共 50 条