Conditional multiple-point geostatistical simulation for unevenly distributed sample data

被引:28
|
作者
Chen, Qiyu [1 ,2 ]
Liu, Gang [1 ,2 ]
Ma, Xiaogang [3 ]
Zhang, Junqiang [1 ,2 ]
Zhang, Xialin [1 ,2 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Hubei, Peoples R China
[3] Univ Idaho, Dept Comp Sci, 875 Perimeter Dr MS 1010, Moscow, ID 83844 USA
基金
中国国家自然科学基金;
关键词
Multiple-point geostatistics; Conditional simulation; Unevenly distributed data; Density-sensitive; Spatial partitioning; RAINFALL TIME-SERIES; PIEZOMETRIC HEAD; RECONSTRUCTION; IMAGES; STATISTICS; ALGORITHM; PATTERNS; PATH;
D O I
10.1007/s00477-019-01671-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To expand the applicability/versatility of multiple-point geostatistical (MPS) methods to the unevenly distributed sample data acquired from geological and environmental surveys, this paper presents a conditional MPS-based simulation method which considers the distribution characteristics of sample data adequately. In this work, we mainly focus on the improvement of two key steps in MPS methods, i.e. the selection of simulation paths and the construction of data events, aiming at mitigating the adverse effects of unevenly distributed conditioning data. First, a simulation path sensitive to the distribution density of informed samples is adopted to ensure that each simulation of the unknown nodes in a simulation grid is done from the location with the highest density of informed nodes around. Second, a stable data event is obtained by evenly extracting several informed nodes closest to the current node from each subarea. This improvement avoids the excessive concentration of the nodes in a data event, so that the nodes in an obtained data event are more evenly distributed around the current node. The two improvements are embedded into a widely used MPS method, the direct sampling. Several 2D and 3D synthetic experiments with categorical or continuous variables are used to test the proposed method. The results demonstrate their applicability in characterizing heterogeneous phenomena when faced with unevenly distributed conditioning data.
引用
收藏
页码:973 / 987
页数:15
相关论文
共 50 条
  • [1] Conditional multiple-point geostatistical simulation for unevenly distributed sample data
    Qiyu Chen
    Gang Liu
    Xiaogang Ma
    Junqiang Zhang
    Xialin Zhang
    [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33 : 973 - 987
  • [2] Multiple-point geostatistical simulation based on conditional conduction probability
    Cui, Zhesi
    Chen, Qiyu
    Liu, Gang
    Ma, Xiaogang
    Que, Xiang
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (07) : 1355 - 1368
  • [3] Multiple-point geostatistical simulation based on conditional conduction probability
    Zhesi Cui
    Qiyu Chen
    Gang Liu
    Xiaogang Ma
    Xiang Que
    [J]. Stochastic Environmental Research and Risk Assessment, 2021, 35 : 1355 - 1368
  • [4] A workflow for multiple-point geostatistical simulation
    Liu, YH
    Harding, A
    Gilbert, R
    Journel, A
    [J]. Geostatistics Banff 2004, Vols 1 and 2, 2005, 14 : 245 - 254
  • [5] Multiple-point geostatistical simulation for mine evaluation with aeromagnetic data
    Hong, Jinpyo
    Oh, Seokhoon
    Cho, Seong-Jun
    [J]. EXPLORATION GEOPHYSICS, 2018, 49 (06) : 952 - 965
  • [6] Digital Elevation Data Fusion Using Multiple-Point Geostatistical Simulation
    Tang, Yunwei
    Zhang, Jingxiong
    Jing, Linhai
    Li, Hui
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (10) : 4922 - 4934
  • [7] Multiple-point geostatistical simulation using enriched pattern databases
    Hassan Rezaee
    Denis Marcotte
    Pejman Tahmasebi
    Antoine Saucier
    [J]. Stochastic Environmental Research and Risk Assessment, 2015, 29 : 893 - 913
  • [8] Multiple-point geostatistical simulation using enriched pattern databases
    Rezaee, Hassan
    Marcotte, Denis
    Tahmasebi, Pejman
    Saucier, Antoine
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (03) : 893 - 913
  • [9] Visualization facilitates uncertainty evaluation of multiple-point geostatistical stochastic simulation
    Qianhong Huang
    Qiyu Chen
    Gang Liu
    Zhesi Cui
    [J]. Visual Intelligence, 1 (1):
  • [10] Mixed-point geostatistical simulation: A combination of two- and multiple-point geostatistics
    Cordua, Knud Skou
    Hansen, Thomas Mejer
    Gulbrandsen, Mats Lundh
    Barnes, Christophe
    Mosegaard, Klaus
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (17) : 9030 - 9037