Combined Estimation of Thickness and Velocities Using Ultrasound Guided Waves: A Pioneering Study on In Vitro Cortical Bone Samples

被引:86
|
作者
Foiret, Josquin [1 ,2 ,3 ]
Minonzio, Jean-Gabriel [1 ,2 ,3 ]
Chappard, Christine [4 ]
Talmant, Maryline [1 ,2 ,3 ]
Laugier, Pascal [1 ,2 ,3 ]
机构
[1] Univ Paris 06, Sorbonne Univ, UMR 7623, Lab Imagerie Biomed, Paris, France
[2] CNRS, UMR 7371, Lab Imagerie Biomed, Paris, France
[3] INSERM, UMR S 1146, Lab Imagerie Biomed, Paris, France
[4] PRES Univ, Univ Denis Diderot, Sorbonne Paris Cite, CNRS,UMR 7052,B2OA, Paris, France
关键词
AXIAL-TRANSMISSION; LONG BONES; ACCURATE MEASUREMENT; ELASTIC-ANISOTROPY; LAMB WAVES; POROSITY; PLATES; INVERSION; ALGORITHM; MODES;
D O I
10.1109/TUFFC.2014.3062
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper reports for the first time on inverse estimation of several bone properties from guided-wave measurements in human bone samples. Previously, related approaches have focused on ultrasonic estimation of a single bone property at a time. The method is based on two steps: the multi-Lamb mode response is analyzed using the singular value decomposition signal processing method recently introduced in the field, then an identification procedure is run to find thickness and anisotropic elastic properties of the considered specimen. Prior to the measurements on bone, the method is validated on cortical bone-mimicking phantoms. The repeatability and the trueness of the estimated parameters on bone-mimicking phantoms were found around a few percent. Estimation of cortical thickness on bone samples was in good agreement with cortical thickness derived from high-resolution peripheral quantitative computed tomography data analysis of the samples.
引用
收藏
页码:1478 / 1488
页数:11
相关论文
共 50 条
  • [1] COMBINED ESTIMATION OF THICKNESS AND VELOCITY OF CORTICAL SHELL USING REFLECTED WAVES: STUDY ON BONE PHANTOMS AND SAMPLES
    Litniewski, Jerzy
    Tasinkevych, Yurij
    Podhajecki, Jerzy
    Falinska, Katarzyna
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [2] Assessment of the cortical bone thickness using ultrasonic guided waves:: Modelling and in vitro study
    Moilanen, Petro
    Nicholson, Patrick H. F.
    Kilappa, Vantte
    Cheng, Sulin
    Timonen, Jussi
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2007, 33 (02): : 254 - 262
  • [3] Multichannel Crossed Convolutional Neural Network for Combined Estimation of Cortical Thickness and Bulk Velocities Using Ultrasonic Guided Waves: A Simulation Study
    Li, Yifang
    Xu, Kailiang
    Li, Ying
    Hu, Bo
    Zhang, Jianqiu
    Le, Lawrence H.
    Ta, Dean
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 2412 - 2415
  • [4] Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study
    Minonzio, J. -G.
    Bochud, N.
    Vallet, Q.
    Bala, Y.
    Ramiandrisoa, D.
    Follet, H.
    Mitton, D.
    Laugier, P.
    BONE, 2018, 116 : 111 - 119
  • [5] Estimation of in vivo cortical bone thickness using ultrasonic waves
    Mano, Isao
    Horii, Kaoru
    Hagino, Hiroshi
    Miki, Takami
    Matsukawa, Mami
    Otani, Takahiko
    JOURNAL OF MEDICAL ULTRASONICS, 2015, 42 (03) : 315 - 322
  • [6] Estimation of in vivo cortical bone thickness using ultrasonic waves
    Isao Mano
    Kaoru Horii
    Hiroshi Hagino
    Takami Miki
    Mami Matsukawa
    Takahiko Otani
    Journal of Medical Ultrasonics, 2015, 42 : 315 - 322
  • [7] Dependencies of phase velocities of ultrasonic guided waves on cortical thickness in soft tissue-bone mimicking phantoms
    Lee, Kang Il
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2021, 40 (06): : 587 - 592
  • [8] Correlations of Phase Velocities of Guided Ultrasonic Waves with Cortical Thickness in Bovine Tibia
    Lee, Kang Ii
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2011, 30 (01): : 56 - 62
  • [9] Assessment of cortical bone thickness using ultrasound
    Degen, Katharina
    Habor, Daniel
    Radermacher, Klaus
    Heger, Stefan
    Kern, Jaana-Sophia
    Wolfart, Stefan
    Marotti, Juliana
    CLINICAL ORAL IMPLANTS RESEARCH, 2017, 28 (05) : 520 - 528