Parallelizing multi-objective evolutionary algorithms: Cone separation

被引:64
|
作者
Branke, J [1 ]
Schmeck, H [1 ]
Deb, K [1 ]
Reddy, M [1 ]
机构
[1] Univ Karlsruhe, Inst AIFB, Karlsruhe, Germany
关键词
D O I
10.1109/CEC.2004.1331135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary multi-objective optimization (EMO) may be computatinally quite demanding, because instead of searching for a single optimum, one generally wishes to find the whole front of Pareto-optimal solutions. For that reason, parallelizing EMO is an important issue. Since we are looking for a number of Pareto-optimal solutions with different trade-offs between the objectives, it seems natural to assign different parts of the search space to different processors. In this paper, we propose the idea of cone separation which is used to divide up the search space by adding explicit constraints for each process. We show that the approach is more efficient than simple parallelization schemes, and that it also works on problems with a non-convex Pareto-optimal front.
引用
收藏
页码:1952 / 1957
页数:6
相关论文
共 50 条
  • [1] Parallelizing Multi-objective Evolutionary Genetic Algorithms
    Shinde, G. N.
    Jagtap, Sudhir B.
    Pani, Subhendu Kumar
    [J]. WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL II, 2011, : 1534 - 1537
  • [2] An effective model of multiple multi-objective evolutionary algorithms with the assistance of regional multi-objective evolutionary algorithms: VIPMOEAs
    Cheshmehgaz, Hossein Rajabalipour
    Desa, Mohamad Ishak
    Wibowo, Antoni
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (05) : 2863 - 2895
  • [3] Genetic diversity as an objective in multi-objective evolutionary algorithms
    Toffolo, A
    Benini, E
    [J]. EVOLUTIONARY COMPUTATION, 2003, 11 (02) : 151 - 167
  • [4] Fuzzy Classification with Multi-objective Evolutionary Algorithms
    Jimenez, Fernando
    Sanchez, Gracia
    Sanchez, Jose F.
    Alcaraz, Jose M.
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 730 - 738
  • [5] Multi-Objective BOO Optimization with Evolutionary Algorithms
    Shirinzadeh, Saeideh
    Soeken, Mathias
    Drechsler, Rolf
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 751 - 758
  • [6] Multi-objective evolutionary algorithms for structural optimization
    Coello, CAC
    Pulido, GT
    Aguirre, AH
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2244 - 2248
  • [7] Robustness using Multi-Objective Evolutionary Algorithms
    Gaspar-Cunha, A.
    Covas, J. A.
    [J]. APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 353 - +
  • [8] Performance scaling of multi-objective evolutionary algorithms
    Khare, V
    Yao, X
    Deb, K
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2003, 2632 : 376 - 390
  • [9] Multi-objective immune evolutionary algorithms for SLAM
    Li Meiyi
    [J]. Proceedings of the 26th Chinese Control Conference, Vol 5, 2007, : 216 - 220
  • [10] Research on evolutionary multi-objective optimization algorithms
    Gong, Mao-Guo
    Jiao, Li-Cheng
    Yang, Dong-Dong
    Ma, Wen-Ping
    [J]. Ruan Jian Xue Bao/Journal of Software, 2009, 20 (02): : 271 - 289