Quantitative predictions in small-animal X-ray fluorescence tomography

被引:5
|
作者
Shaker, Kian [1 ]
Larsson, Jakob C. [1 ]
Hertz, Hans M. [1 ]
机构
[1] KTH Royal Inst Technol AlbaNova, Biomed & Xray Phys, Dept Appl Phys, S-10691 Stockholm, Sweden
关键词
NANOPARTICLE-LOADED OBJECTS; COMPUTED-TOMOGRAPHY; MICRO-CT; XFCT; RECONSTRUCTION;
D O I
10.1364/BOE.10.003773
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
X-ray fluorescence (XRF) tomography from nanoparticles (NPs) shows promise for high-spatial-resolution molecular imaging in small-animals Quantitative reconstruction algorithms aim to reconstruct the true distribution of NPs inside the small-animal, but so far there has been no feasible way to predict signal levels or evaluate the accuracy of reconstructions in realistic scenarios. Here we present a GPU-based computational model for small-animal XRF tomography. The unique combination of a highly accelerated Monte Carlo tool combined with an accurate small-animal phantom allows unprecedented realistic full body simulations. We use this model to simulate our experimental system to evaluate the quantitative performance and accuracy of our reconstruction algorithms on large-scale organs as well as mm-sued tumors. Furthermore, we predict the detection limits for sub-mm tumors at realistic NP concentrations. The computational model will be a valuable tool for optimizing next-generation experimental arrangements and reconstruction algorithms. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:3773 / 3788
页数:16
相关论文
共 50 条
  • [1] High-spatial-resolution Monte Carlo simulations of small-animal X-ray fluorescence tomography
    Shaker, Kian
    Larsson, Jakob C.
    Hertz, Hans M.
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [2] Numerical simulation of x-ray luminescence optical tomography for small-animal imaging
    Li, Changqing
    Martinez-Davalos, Arnulfo
    Cherry, Simon R.
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (04)
  • [3] Small-animal tomography with a liquid-metal-jet x-ray source
    Larsson, D. H.
    Lundstrom, U.
    Westermark, U.
    Takman, P. A. C.
    Burvall, A.
    Henriksson, M. Arsenian
    Hertz, H. M.
    MEDICAL IMAGING 2012: PHYSICS OF MEDICAL IMAGING, 2012, 8313
  • [4] X-ray micro-tomography system for small-animal imaging with zoom-in imaging capability
    Chun, IK
    Cho, MH
    Lee, SC
    Cho, MH
    Lee, SY
    PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (17): : 3889 - 3902
  • [5] Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination
    Da Silva, Anabela
    Leabad, Mehdi
    Driol, Clemence
    Bordy, Thomas
    Debourdeau, Mathieu
    Dinten, Jean-Marc
    Peltie, Philippe
    Rizo, Philippe
    APPLIED OPTICS, 2009, 48 (10) : D151 - D162
  • [6] Quantitative characterization of microsamples by x-ray fluorescence tomography
    Chukalina, M
    Simionovici, A
    Snigirev, A
    Jeffries, T
    X-RAY SPECTROMETRY, 2002, 31 (06) : 448 - 450
  • [7] Assessment of a new high-performance small-animal X-ray tomograph
    Vaquero, J. J.
    Redondo, S.
    Lage, E.
    Abella, M.
    Sisniega, A.
    Tapias, G.
    Montenegro, M. L. Soto
    Desco, M.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (03) : 898 - 905
  • [8] A Novel Integrated X-Ray and Fluorescence Tomography System for Small Animal Radiation Research Platform
    Wang, K.
    Yang, Y.
    Eslami, S.
    Iordachita, I.
    Patterson, M.
    Wong, J.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [9] High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography
    Daniel H. Larsson
    William Vågberg
    Andre Yaroshenko
    Ali Önder Yildirim
    Hans M. Hertz
    Scientific Reports, 6
  • [10] High-resolution short- exposure small-animal laboratory x-ray phase-contrast tomography
    Larsson, Daniel H.
    Vagberg, William
    Yaroshenko, Andre
    Yildirim, Ali Oender
    Hertz, Hans M.
    SCIENTIFIC REPORTS, 2016, 6