Clustering files of chemical structures using the fuzzy k-means clustering method

被引:36
|
作者
Holliday, JD
Rodgers, SL
Willett, P
Chen, MY
Mahfouf, M
Lawson, K
Mullier, G
机构
[1] Univ Sheffield, Krebs Inst Biomol Res, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Dept Informat Studies, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[4] Syngenta, Jealotts Hill Int Res Ctr, Bracknell RG42 6EY, Berks, England
关键词
D O I
10.1021/ci0342674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper evaluates the use of the fuzzy k-means clustering method for the clustering of files of 2D chemical structures. Simulated property prediction experiments with the Starlist file of logP values demonstrate that use of the fuzzy k-means method can, in some cases, yield results that are superior to those obtained with the conventional k-means method and with Ward's clustering method. Clustering of several small sets of agrochemical compounds demonstrate the ability of the fuzzy k-means method to highlight multicluster membership and to identify outlier compounds, although the former can be difficult to interpret in some cases.
引用
收藏
页码:894 / 902
页数:9
相关论文
共 50 条
  • [1] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [2] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    [J]. 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [3] Using graph-based consensus clustering for combining K-means clustering of heterogeneous chemical structures
    Faisal Saeed
    Naomie Salim
    Ammar Abdo
    Hentabli Hamza
    [J]. Journal of Cheminformatics, 5 (Suppl 1)
  • [4] A Constructing Method of Fuzzy Classifier Using Kernel K-means Clustering Algorithm
    Yang, Aimin
    Li, Qing
    Li, Xinguang
    [J]. 2009 SECOND INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING: KAM 2009, VOL 2, 2009, : 73 - +
  • [5] Fuzzy modeling by hyperbolic fuzzy k-means clustering
    Watanabe, N
    [J]. PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1528 - 1531
  • [6] Fuzzy K-Means Clustering With Discriminative Embedding
    Nie, Feiping
    Zhao, Xiaowei
    Wang, Rong
    Li, Xuelong
    Li, Zhihui
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (03) : 1221 - 1230
  • [7] Modified fuzzy K-means clustering using expectation maximization
    Nasser, Sara
    Alkhaldi, Rawan
    Vert, Gregory
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 231 - +
  • [8] Fuzzy K-means clustering with reconstructed information
    Huang, Honglan
    Shi, Wei
    Yang, Fangjie
    Feng, Yanghe
    Zhang, Longfei
    Liang, Xingxing
    Shi, Jun
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [9] Concept lattice reduction using fuzzy K-Means clustering
    Kumar, Ch. Aswani
    Srinivas, S.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (03) : 2696 - 2704
  • [10] Fuzzy K-means clustering with missing values
    Sarkar, M
    Leong, TY
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, : 588 - 592