Two-Scale Finite Element Modelling of Microstructures

被引:0
|
作者
Brocks, Wolfgang [1 ]
Cornec, Alfred [1 ]
Steglich, D. [1 ]
机构
[1] GKSS Forschungszentrum Geesthacht GmbH, Inst Mat Res, Geesthacht, Germany
关键词
multiscale modelling; micromechanical modelling; crystal plasticity; slip systems; twinning; hcp metals; magnesium; titanium aluminides; POLYSYNTHETICALLY TWINNED CRYSTALS; MAGNESIUM ALLOY; PLASTIC-DEFORMATION; DUCTILE RUPTURE; LAMELLAR STRUCTURE; FRACTURE-BEHAVIOR; PST CRYSTALS; STRAIN; DAMAGE; SLIP;
D O I
10.4028/www.scientific.net/AMR.59.3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modelling the constitutive behaviour of metallic materials based on their microstructural features and the micromechanical mechanisms in the framework of continuum mechanics is addressed. Deformation at the lengthscale of grains is described by crystal plasticity. The macroscopic behaviour is obtained either by a homogenisation process yielding phenomenological equations or by a submodel technique. The modelling processes for two light-weight materials, namely magnesium and titanium aluminides are presented.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [1] Two-scale finite element analysis of heterogeneous solids with periodic microstructures
    Matsui, K
    Terada, K
    Yuge, K
    [J]. COMPUTERS & STRUCTURES, 2004, 82 (7-8) : 593 - 606
  • [2] Two-scale sparse finite element approximations
    Fang Liu
    JinWei Zhu
    [J]. Science China Mathematics, 2016, 59 : 789 - 808
  • [3] Two-scale sparse finite element approximations
    Liu Fang
    Zhu JinWei
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (04) : 789 - 808
  • [4] Two-scale sparse finite element approximations
    LIU Fang
    ZHU JinWei
    [J]. Science China Mathematics, 2016, 59 (04) : 789 - 808
  • [5] TWO-SCALE FINITE ELEMENT DISCRETIZATIONS FOR INTEGRODIFFERENTIAL EQUATIONS
    Chen, Huajie
    Liu, Fang
    Reich, Nils
    Winter, Christoph
    Zhou, Aihui
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2011, 23 (03) : 351 - 381
  • [6] Localizations and parallelizations for two-scale finite element discretizations
    Liu, Fang
    Zhou, Alhul
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (03) : 757 - 773
  • [7] Subscales on the element boundaries in the variational two-scale finite element method
    Codina, Ramon
    Principe, Javier
    Baiges, Joan
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (5-8) : 838 - 852
  • [8] Two-scale finite element discretizations for partial differential equations
    Liu, Fang
    Zhou, Aihui
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 373 - 392
  • [9] An Augmented Two-Scale Finite Element Method for Eigenvalue Problems
    Dai, Xiaoying
    Du, Yunyun
    Liu, Fang
    Zhou, Aihui
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [10] Two-Scale Topology Optimization with Microstructures
    Zhu, Bo
    Skouras, Melina
    Chen, Desai
    Matusik, Wojciech
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (05):