On the Steinhaus property in topological groups

被引:3
|
作者
Weber, H [1 ]
Zoli, E [1 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
关键词
locally compact Abelian groups; Haar measure; Baire property; Steinhaus property; partition theorems;
D O I
10.1016/j.topol.2005.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a locally compact Abelian group and mu a Haar measure on G. We prove: (a) If G is connected, then the complement of a union of finitely many translates of subgroups of G with infinite index is mu-thick and everywhere of second category. (b) Under a simple (and fairly general) assumption on G, for every cardinal number In such that to n(0) <= m <= \G\ there is a subgroup of G of index m that is It-thick and everywhere of second category. These results extend theorems by Muthuvel and Erdos-Marcus, respectively. (b) also implies a recent theorem by Comfort-Raczkowski-Trigos stating that every nondiscrete compact Abelian group G admits 2(\G\)-many mu-nonmeasurable dense subgroups. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:2035 / 2046
页数:12
相关论文
共 50 条
  • [1] On the Banach-Steinhaus Theorem for Topological Groups
    Litvinov, Semyon N.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (09): : 836 - 838
  • [2] COMPACTNESS PROPERTY OF TOPOLOGICAL GROUPS
    WANG, SP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 187 (01) : 83 - 88
  • [3] ON PROPERTY (T) FOR PAIRS OF TOPOLOGICAL GROUPS
    Jolissaint, Paul
    [J]. ENSEIGNEMENT MATHEMATIQUE, 2005, 51 (1-2): : 31 - 45
  • [4] Steinhaus property for products of ideals
    Balcerzak, M
    Kotlicka, E
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 63 (1-2): : 235 - 248
  • [5] A remark on sets having the Steinhaus property
    Ciucu, M
    [J]. COMBINATORICA, 1996, 16 (03) : 321 - 324
  • [6] The strong Pytkeev property for topological groups and topological vector spaces
    S. S. Gabriyelyan
    J. Ka̧kol
    A. Leiderman
    [J]. Monatshefte für Mathematik, 2014, 175 : 519 - 542
  • [7] The strong Pytkeev property for topological groups and topological vector spaces
    Gabriyelyan, S. S.
    Kakol, J.
    Leiderman, A.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 175 (04): : 519 - 542
  • [8] Property (T) for topological groups and C*-algebras
    Pavlov A.
    Troitsky E.
    [J]. Journal of Mathematical Sciences, 2009, 159 (6) : 863 - 878
  • [9] BAIRE SET FIXING PROPERTY IN TOPOLOGICAL GROUPS
    GAIT, J
    [J]. MATHEMATISCHE ANNALEN, 1973, 200 (03) : 235 - 240
  • [10] On topological groups with an approximate fixed point property
    Barroso, Cleon S.
    Mbombo, Brice R.
    Pestov, Vladimir G.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2017, 89 (01): : 19 - 30