Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage

被引:75
|
作者
Liu, Songyang [1 ,2 ]
Yang, Huaming [1 ,2 ]
机构
[1] Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Res Ctr Mineral Mat, Changsha 410083, Hunan, Peoples R China
关键词
Coal-series kaolin; Stearic acid; Hybridizing; Phase change materials; Thermal energy storage; ORGANIC TEMPLATE; FATTY-ACIDS; ENHANCEMENT; STABILITY; ZSM-5; PCMS;
D O I
10.1016/j.clay.2014.09.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper aimed at developing a novel form-stable composite phase change material (PCM) by using stearic acid (SA) to hybridize coal-series kaolinite (Kc) via vacuum impregnation method. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The thermal properties of the composite were characterized by using differential scanning calorimetly (DSC) and thermal cycling test analysis technique. Natural kaolin (K) was also used as the support to make further investigation on the thermal properties of the kaolinite-based composite PCM. The crystallinity of SA in SA/Kc (90.1%) was higher than that of SA/K (84.9%). The SA/Kc composite showed an enhanced thermal storage capacity compared with the SA/K composite. The latent heats of melting (66.30 J/g) and freezing (65.60 J/g) for SA/Kc were higher than those of SA/K sample (59.25 and 59.01 J/g, respectively). Furthermore, the SA/Kc composite PCM showed an excellent stability after up to 200 thermal cycling. The corresponding mechanism was discussed in detail. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 281
页数:5
相关论文
共 50 条
  • [1] Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage
    Li, Jianwen
    Zuo, Xiaochao
    Zhao, Xiaoguang
    Li, Daokui
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2019, 183
  • [2] Wollastonite hybridizing stearic acid as thermal energy storage material
    Xu, Dawei
    Yang, Huaming
    FUNCTIONAL MATERIALS LETTERS, 2014, 7 (06)
  • [3] Stearic acid/boron nitride as a composite phase change material for thermal energy storage
    Ao, Ci
    Yan, Suying
    Zhao, Xiaoyan
    Zhang, Na
    Wu, Yuting
    DIAMOND AND RELATED MATERIALS, 2023, 133
  • [4] Fabrication and optimization of kaolin/stearic acid composite as a form-stable phase change material for application in the thermal energy storage systems
    Jafaripour, M.
    Sadrameli, S. M.
    Pahlavanzadeh, H.
    Mousavi, S. A. H. Seyed
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [5] Stearic acid/expanded graphite composite phase change material with high thermal conductivity for thermal energy storage
    Ao, Ci
    Yan, Suying
    Zhao, Sitong
    Hu, Wenqi
    Zhao, Long
    Wu, Yuting
    ENERGY REPORTS, 2022, 8 : 4834 - 4843
  • [6] Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage
    Li, Chuanchang
    Xie, Baoshan
    Chen, Deliang
    Chen, Jian
    Li, Wei
    Chen, Zhongsheng
    Gibb, Stuart W.
    Long, Yi
    ENERGY, 2019, 166 (246-255) : 246 - 255
  • [7] A novel composite Phase change material of Stearic Acid/Carbonized sunflower straw for thermal energy storage
    Wen, Ruilong
    Zhang, Weiyi
    Lv, Zhenfei
    Huang, Zhaohui
    Gao, Wei
    MATERIALS LETTERS, 2018, 215 : 42 - 45
  • [8] Thermal energy storage system using stearic acid as a phase change material
    Sari, A
    Kaygusuz, K
    SOLAR ENERGY, 2001, 71 (06) : 365 - 376
  • [9] Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage
    Wang, Yi
    Xia, Tian Dong
    Zheng, Han
    Feng, Hui Xia
    ENERGY AND BUILDINGS, 2011, 43 (09) : 2365 - 2370
  • [10] Stearic Acid/Copper Foam as Composite Phase Change Materials for Thermal Energy Storage
    Chuanchang Li
    Xinbo Zhao
    Bo Zhang
    Baoshan Xie
    Zhangxing He
    Jian Chen
    Jianjun He
    Journal of Thermal Science, 2020, 29 : 492 - 502