Two entropy-based methods for learning unsupervised Gaussian mixture models

被引:0
|
作者
Penalver, Antonio [1 ]
Escolano, Francisco [1 ]
Saez, Juan M. [1 ]
机构
[1] Univ Alicante, Robot Vis Grp, E-03080 Alicante, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the problem of estimating the parameters of a Gaussian mixture model. Although the EM (Expectation-Maximization) algorithm yields the maximum-likelihood solution it requires a careful initialization of the parameters and the optimal number of kernels in the mixture may be unknown beforehand. We propose a criterion based on the entropy of the pdf (probability density function) associated to each kernel to measure the quality of a given mixture model. Two different methods for estimating Shannon entropy are proposed and a modification of the classical EM algorithm to find the optimal number of kernels in the mixture is presented. We test our algorithm in probability density estimation, pattern recognition and color image segmentation.
引用
收藏
页码:649 / 657
页数:9
相关论文
共 50 条
  • [1] Learning Gaussian Mixture Models With Entropy-Based Criteria
    Penalver Benavent, Antonio
    Escolano Ruiz, Francisco
    Manuel Saez, Juan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (11): : 1756 - 1771
  • [2] EBEM:: An entropy-based EM algorithm for Gaussian mixture models
    Benavent, Antonio Penalver
    Ruiz, Francisco Escolano
    Martinez, Juan M. Ssez
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 451 - +
  • [3] Entropy-Based Anomaly Detection for Gaussian Mixture Modeling
    Scrucca, Luca
    [J]. ALGORITHMS, 2023, 16 (04)
  • [4] Entropy Penalized Learning for Gaussian Mixture Models
    Wang, Boyu ksa
    Wan, Feng
    Mak, Peng Un
    Mak, Pui In
    Vai, Mang I.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2067 - 2073
  • [5] Learning of Multivariate Beta Mixture Models via Entropy-based component splitting
    Manouchehri, Narges
    Rahmanpour, Maryam
    Bouguila, Nizar
    Fan, Wentao
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2825 - 2832
  • [6] Proportional data modeling via entropy-based variational bayes learning of mixture models
    Fan, Wentao
    Al-Osaimi, Faisal R.
    Bouguila, Nizar
    Du, Jixiang
    [J]. APPLIED INTELLIGENCE, 2017, 47 (02) : 473 - 487
  • [7] Proportional data modeling via entropy-based variational bayes learning of mixture models
    Wentao Fan
    Faisal R. Al-Osaimi
    Nizar Bouguila
    Jixiang Du
    [J]. Applied Intelligence, 2017, 47 : 473 - 487
  • [8] An entropy-based unsupervised anomaly detection pattern learning algorithm
    杨英杰
    马范援
    [J]. Journal of Harbin Institute of Technology(New series), 2005, (01) : 81 - 85
  • [9] Unsupervised parameterisation of Gaussian mixture models
    Ponsa, D
    Roca, X
    [J]. TOPICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 2504 : 388 - 398
  • [10] Entropy-Based Incremental Variational Bayes Learning of Gaussian Mixtures
    Penalver, Antonio
    Escolano, Francisco
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) : 534 - 540