Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system

被引:0
|
作者
Baltes, Nicholas J. [1 ,2 ]
Hummel, Aaron W. [1 ,2 ]
Konecna, Eva [1 ,2 ]
Cegan, Radim [3 ]
Bruns, Aaron N. [4 ,5 ]
Bisaro, David M. [4 ,5 ]
Voytas, Daniel F. [1 ,2 ]
机构
[1] Univ Minnesota, Dept Genet Cell Biol & Dev, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Genome Engn, Minneapolis, MN 55455 USA
[3] Inst Biophys ASCR, Dept Plant Dev Genet, Vvi, Brno 61200, Czech Republic
[4] Ohio State Univ, Ctr Appl Plant Sci, Dept Mol Genet, Columbus, OH 43210 USA
[5] Ohio State Univ, Ohio State Biochem Program, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
SEQUENCE; PLANT; RNA; DNA; PLATFORM;
D O I
10.1038/NPLANTS.2015.145
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To reduce crop losses due to geminivirus infection, we targeted the bean yellow dwarf virus (BeYDV) genome for destruction with the CRISPR-Cas (clustered, regularly interspaced short palindromic repeats-CRISPR-associated proteins) system. Transient assays using BeYDV-based replicons revealed that CRISPR-Cas reagents introduced mutations within the viral genome and reduced virus copy number. Transgenic plants expressing CRISPR-Cas reagents and challenged with BeYDV had reduced virus load and symptoms, thereby demonstrating a novel strategy for engineering resistance to geminiviruses.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system
    Nicholas J. Baltes
    Aaron W. Hummel
    Eva Konecna
    Radim Cegan
    Aaron N. Bruns
    David M. Bisaro
    Daniel F. Voytas
    [J]. Nature Plants, 1 (10)
  • [2] Crispr-Cas, The Prokaryotic Adaptive Immune System
    Marraffini, Luciano
    [J]. FASEB JOURNAL, 2016, 30
  • [3] Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System
    Matvey V. Kolesnik
    Iana Fedorova
    Karyna A. Karneyeva
    Daria N. Artamonova
    Konstantin V. Severinov
    [J]. Biochemistry (Moscow), 2021, 86 : 1301 - 1314
  • [4] Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System
    Kolesnik, Matvey V.
    Fedorova, Iana
    Karneyeva, Karyna A.
    Artamonova, Daria N.
    Severinov, Konstantin V.
    [J]. BIOCHEMISTRY-MOSCOW, 2021, 86 (10) : 1301 - 1314
  • [5] The Application of the CRISPR-Cas System in Antibiotic Resistance
    Tao, Shuan
    Chen, Huimin
    Li, Na
    Liang, Wei
    [J]. INFECTION AND DRUG RESISTANCE, 2022, 15 : 4155 - 4168
  • [6] The CRISPR-Cas immune system: Biology, mechanisms and applications
    Rath, Devashish
    Amlinger, Lina
    Rath, Archana
    Lundgren, Magnus
    [J]. BIOCHIMIE, 2015, 117 : 119 - 128
  • [7] Next Generation Prokaryotic Engineering: The CRISPR-Cas ToolKit
    Mougiakos, Ioannis
    Bosma, Elleke F.
    de Vos, Willem M.
    van Kranenburg, Richard
    van der Oost, John
    [J]. TRENDS IN BIOTECHNOLOGY, 2016, 34 (07) : 575 - 587
  • [8] Immune responses to CRISPR-Cas protein
    Roy, Sobhan
    [J]. ADVANCES IN CRISPR/CAS AND RELATED TECHNOLOGIES, 2021, 178 : 213 - 229
  • [9] Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants
    Ji, Xiang
    Zhang, Huawei
    Zhang, Yi
    Wang, Yanpeng
    Gao, Caixia
    [J]. NATURE PLANTS, 2015, 1 (10)
  • [10] The CRISPR-Cas system in Enterobacteriaceae
    Medina-Aparicio, Liliana
    Davila, Sonia
    Rebollar-Flores, Javier E.
    Calva, Edmundo
    Hernandez-Lucas, Ismael
    [J]. PATHOGENS AND DISEASE, 2018, 76 (01):