Efficient Parameter Estimation for Information Retrieval Using Black-Box Optimization

被引:6
|
作者
Costa, Alberto [1 ,2 ]
Di Buccio, Emanuele [3 ]
Melucci, Massimo [3 ]
Nannicini, Giacomo [4 ]
机构
[1] Natl Univ Singapore, Singapore 119077, Singapore
[2] Swiss Fed Inst Technol, Future Resilient Syst Program, CH-8092 Zurich, Switzerland
[3] Univ Padua, I-35122 Padua, Italy
[4] IBM Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
欧盟地平线“2020”;
关键词
Information retrieval; optimization; parameter estimation; GLOBAL OPTIMIZATION; SEARCH; VALUES; MODELS;
D O I
10.1109/TKDE.2017.2761749
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The retrieval function is one of the most important components of an Information Retrieval (IR) system, because it determines to what extent some information is relevant to a user query. Most retrieval functions have "free parameters" whose value must be set before retrieval, significantly affecting the effectiveness of an IR system. Choosing the optimum values for such parameters is therefore of paramount importance. However, the optimum can only be found after a computationally expensive process, especially when the generalization error is estimated via cross-validation. In this paper, we propose to determine free parameter values by solving an optimization problem aimed at maximizing a measure of retrieval effectiveness. We employ the black-box optimization paradigm, since the analytical expression of the measure of effectiveness with respect to the free parameters is unknown. We consider different methods for solving the black-box optimization problem: a simple grid-search over the whole domain, and more sophisticated techniques such as line search and surrogate model based algorithms. Experimental results on several test collections not only provide useful insight about effectiveness, but also about efficiency: they indicate that with appropriate optimization techniques, the computational cost of parameter optimization can be greatly reduced without compromising retrieval effectiveness, even when taking generalization into account.
引用
收藏
页码:1240 / 1253
页数:14
相关论文
共 50 条
  • [1] Efficient Parameter Estimation for Information Retrieval using Black-box Optimization (Extended Abstract)
    Costa, Alberto
    Di Buccio, Emanuele
    Melucci, Massimo
    Nannicini, Giacomo
    [J]. 2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 1817 - 1818
  • [2] Optimization for black-box objective functions using sensitivity information in SVM
    Nakayama, H
    Washino, K
    [J]. ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 1413 - 1417
  • [3] Parameter estimation of DC black-Box arc models using genetic algorithms
    Pessoa, Felipe P.
    Acosta, Jhair S.
    Tavares, Maria C.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2021, 198
  • [4] Using Black-Box Compression Algorithms for Phase Retrieval
    Bakhshizadeh, Milad
    Maleki, Arian
    Jalali, Shirin
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7978 - 8001
  • [5] Black-box estimation of expanding parameter for de Sitter universe
    Lulu Xiao
    Cuihong Wen
    Jiliang Jing
    Jieci Wang
    [J]. The European Physical Journal C, 82
  • [6] Black-box estimation of expanding parameter for de Sitter universe
    Xiao, Lulu
    Wen, Cuihong
    Jing, Jiliang
    Wang, Jieci
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (08):
  • [7] Efficient global optimization of expensive black-box functions
    Jones, DR
    Schonlau, M
    Welch, WJ
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) : 455 - 492
  • [8] ROCK☆ - Efficient Black-box Optimization for Policy Learning
    Hwangbo, Jemin
    Gehring, Christian
    Sommer, Hannes
    Siegwart, Roland
    Buchli, Jonas
    [J]. 2014 14TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2014, : 535 - 540
  • [9] Efficient Global Optimization of Expensive Black-Box Functions
    Donald R. Jones
    Matthias Schonlau
    William J. Welch
    [J]. Journal of Global Optimization, 1998, 13 : 455 - 492
  • [10] Parameter Estimation of DC Black-Box Arc Models Using System Identification Theory
    Pessoa, Felipe P.
    Acosta, Jhair S.
    Tavares, Maria C.
    [J]. JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (04) : 1229 - 1236