Tensorial blind source separation for improved analysis of multi-omic data

被引:13
|
作者
Teschendorff, Andrew E. [1 ,2 ,3 ]
Jing, Han [1 ,4 ]
Paul, Dirk S. [5 ]
Virta, Joni [6 ]
Nordhausen, Klaus [7 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, CAS MPG Partner Inst Computat Biol, CAS Key Lab Computat Biol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China
[2] UCL, UCL Elizabeth Garrett Anderson Inst Womens Hlth, Dept Womens Canc, 74 Huntley St, London WC1E 6BT, England
[3] UCL, UCL Canc Inst, 74 Huntley St, London WC1E 6BT, England
[4] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[5] Univ Cambridge, Dept Publ Hlth & Primary Care, Strangeways Res Lab, Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England
[6] Univ Turku, Turku 20014, Finland
[7] Vienna Univ Technol, Wiedner Hauptstr 7, A-1040 Vienna, Austria
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
美国国家科学基金会; 英国医学研究理事会;
关键词
Multi-omic; Tensor; Dimensional reduction; Independent component analysis; mQTL; Epigenome-wide association study; Cancer; INDEPENDENT COMPONENT ANALYSIS; DNA METHYLATION CHANGES; GENOMIC DATA; CANCER; DECOMPOSITION; CELLS; MICROARRAY; SIGNATURES; LANDSCAPE; DISCOVERY;
D O I
10.1186/s13059-018-1455-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There is an increased need for integrative analyses of multi-omic data. We present and benchmark a novel tensorial independent component analysis (tICA) algorithm against current state-of-the-art methods. We find that tICA outperforms competing methods in identifying biological sources of data variation at a reduced computational cost. On epigenetic data, tICA can identify methylation quantitative trait loci at high sensitivity. In the cancer context, tICA identifies gene modules whose expression variation across tumours is driven by copy-number or DNA methylation changes, but whose deregulation relative to normal tissue is independent of such alterations, a result we validate by direct analysis of individual data types.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Tensorial blind source separation for improved analysis of multi-omic data
    Andrew E. Teschendorff
    Han Jing
    Dirk S. Paul
    Joni Virta
    Klaus Nordhausen
    [J]. Genome Biology, 19
  • [2] Multi-omic data analysis using Galaxy
    Boekel, Jorrit
    Chilton, John M.
    Cooke, Ira R.
    Horvatovich, Peter L.
    Jagtap, Pratik D.
    Kall, Lukas
    Lehtio, Janne
    Lukasse, Pieter
    Moerland, Perry D.
    Griffin, Timothy J.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (02) : 137 - 139
  • [3] Multi-omic data analysis using Galaxy
    Jorrit Boekel
    John M Chilton
    Ira R Cooke
    Peter L Horvatovich
    Pratik D Jagtap
    Lukas Käll
    Janne Lehtiö
    Pieter Lukasse
    Perry D Moerland
    Timothy J Griffin
    [J]. Nature Biotechnology, 2015, 33 : 137 - 139
  • [4] Multi-omic data integration in food science and analysis
    Herraiz-Gil, Sara
    del Carmen de Arriba, Maria
    Escamez, Maria J.
    Leon, Carlos
    [J]. CURRENT OPINION IN FOOD SCIENCE, 2023, 52
  • [5] OMICtools: an informative directory for multi-omic data analysis
    Henry, Vincent J.
    Bandrowski, Anita E.
    Pepin, Anne-Sophie
    Gonzalez, Bruno J.
    Desfeux, Arnaud
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2014,
  • [6] Editorial: Multi-omic data integration
    Nardini, Christine
    Dent, Jennifer
    Tieri, Paolo
    [J]. FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2015, 3
  • [7] 'Multi-omic' data analysis using O-miner
    Sangaralingam, Ajanthah
    Ullah, Abu Z. Dayem
    Marzec, Jacek
    Gadaleta, Emanuela
    Nagano, Ai
    Ross-Adams, Helen
    Wang, Jun
    Lemoine, Nicholas R.
    Chelala, Claude
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (01) : 130 - 143
  • [8] Deep Learning and Networks for Integrative Analysis of Multi-Omic Data
    Zhang, Aidong
    [J]. 2018 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2018,
  • [9] Integrative Analysis of Multi-Omic Data for the Characteristics of Endometrial Cancer
    Li, Tong
    Ruan, Zhijun
    Song, Chunli
    Yin, Feng
    Zhang, Tuanjie
    Shi, Liyun
    Zuo, Min
    Lu, Linlin
    An, Yuhao
    Wang, Rui
    Ye, Xiyang
    [J]. ACS OMEGA, 2024, 9 (12): : 14489 - 14499
  • [10] The challenges of integrating multi-omic data sets
    Palsson, Bernhard
    Zengler, Karsten
    [J]. NATURE CHEMICAL BIOLOGY, 2010, 6 (11) : 787 - 789