Quantum self-learning Monte Carlo and quantum-inspired Fourier transform sampler

被引:3
|
作者
Endo, Katsuhiro [1 ]
Nakamura, Taichi [2 ]
Fujii, Keisuke [3 ,4 ]
Yamamoto, Naoki [5 ]
机构
[1] Keio Univ, Dept Mech Engn, Kohoku Ku, Hiyoshi 3-14-1, Yokohama, Kanagawa, Japan
[2] Keio Univ, Dept Syst Design Engn, Kohoku Ku, Hiyoshi 3-14-1, Yokohama, Kanagawa, Japan
[3] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[4] Osaka Univ, Ctr Quantum Informat & Quantum Biol, Inst Open & Transdisciplinary Res Initiat, Osaka 5608531, Japan
[5] Keio Univ, Quantum Comp Ctr, Dept Appl Phys & Phys Informat, Kohoku Ku, Hiyoshi 3-14-1, Yokohama, Kanagawa, Japan
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 04期
关键词
NEURAL-NETWORKS;
D O I
10.1103/PhysRevResearch.2.043442
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The self-learning METROPOLIS-Hastings algorithm is a powerful Monte Carlo method that, with the help of machine learning, adaptively generates an easy-to-sample probability distribution for approximating a given hard-to-sample distribution. This paper provides a new self-learning Monte Carlo method that utilizes a quantum computer to output a proposal distribution. In particular, we show a novel subclass of this general scheme based on the quantum Fourier transform circuit; when the dimension of the input to QFT corresponding to the low-frequency components is not large, this sampler is classically simulable while having a certain advantage over conventional methods. The performance of this quantum-inspired algorithm is demonstrated by some numerical simulations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Quantum-Inspired Magnetic Hamiltonian Monte Carlo
    Mongwe, Wilson Tsakane
    Mbuvha, Rendani
    Marwala, Tshilidzi
    [J]. PLOS ONE, 2021, 16 (10):
  • [2] Self-learning quantum Monte Carlo method in interacting fermion systems
    Xu, Xiao Yan
    Qi, Yang
    Liu, Junwei
    Fu, Liang
    Meng, Zi Yang
    [J]. PHYSICAL REVIEW B, 2017, 96 (04)
  • [3] A Quantum-Inspired Hamiltonian Monte Carlo Method for Missing Data Imputation
    Kochan, Didem
    Zhang, Zheng
    Yang, Xiu
    [J]. MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 190, 2022, 190
  • [4] Quantum-Inspired Reinforcement Learning for Quantum Control
    Yu, Haixu
    Zhao, Xudong
    Chen, Chunlin
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2024,
  • [5] Self-learning projective quantum Monte Carlo simulations guided by restricted Boltzmann machines
    Pilati, S.
    Inack, E. M.
    Pieri, P.
    [J]. PHYSICAL REVIEW E, 2019, 100 (04)
  • [6] Self-learning Monte Carlo method
    Liu, Junwei
    Qi, Yang
    Meng, Zi Yang
    Fu, Liang
    [J]. PHYSICAL REVIEW B, 2017, 95 (04)
  • [7] Smooth input preparation for quantum and quantum-inspired machine learning
    Zhikuan Zhao
    Jack K. Fitzsimons
    Patrick Rebentrost
    Vedran Dunjko
    Joseph F. Fitzsimons
    [J]. Quantum Machine Intelligence, 2021, 3
  • [8] Smooth input preparation for quantum and quantum-inspired machine learning
    Zhao, Zhikuan
    Fitzsimons, Jack K.
    Rebentrost, Patrick
    Dunjko, Vedran
    Fitzsimons, Joseph F.
    [J]. QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [9] Quantum-inspired diffusion Monte Carlo optimization algorithm applied to space trajectories and attitude maneuvers
    De Grossi, Federico
    Circi, Christian
    [J]. ADVANCES IN SPACE RESEARCH, 2022, 69 (01) : 592 - 608
  • [10] A Comprehensive Learning Quantum-Inspired Evolutionary Algorithm
    Qin, Yanhui
    Zhang, Gexiang
    Li, Yuquan
    Zhang, Huishen
    [J]. INFORMATION AND BUSINESS INTELLIGENCE, PT II, 2012, 268 : 151 - 157