GlobalWell-Posedness of the Euler-Korteweg System for Small Irrotational Data

被引:26
|
作者
Audiard, Corentin [1 ,2 ]
Haspot, Boris [3 ]
机构
[1] Sorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[2] CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
[3] PSL Res Univ, Univ Paris Dauphine, CNRS, Ceremade,UMR 7534, F-75775 Paris 16, France
关键词
GROSS-PITAEVSKII EQUATION; SCATTERING-THEORY; WEAK SOLUTIONS; EXISTENCE; WAVES;
D O I
10.1007/s00220-017-2843-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Euler-Korteweg equations are a modification of the Euler equations that take into account capillary effects. In the general case they form a quasi-linear system that can be recast as a degenerate Schrodinger type equation. Local well-posedness (in subcritical Sobolev spaces) was obtained by Benzoni-Danchin-Descombes in any space dimension, however, except in some special case (semi-linear with particular pressure) no global well-posedness is known. We prove here that under a natural stability condition on the pressure, global well-posedness holds in dimension d >= 3 for small irrotational initial data. The proof is based on a modified energy estimate, standard dispersive properties if d >= 5, and a careful study of the structure of quadratic nonlinearities in dimension 3 and 4, involving the method of space time resonances.
引用
收藏
页码:201 / 247
页数:47
相关论文
共 21 条
  • [1] Global Well-Posedness of the Euler–Korteweg System for Small Irrotational Data
    Corentin Audiard
    Boris Haspot
    [J]. Communications in Mathematical Physics, 2017, 351 : 201 - 247
  • [2] Globalwell-posedness and I method for the fifth order Korteweg-de Vries equation
    Wengu Chen
    Zihua Guo
    [J]. Journal d'Analyse Mathématique, 2011, 114 : 121 - 156
  • [3] Small energy traveling waves for the Euler-Korteweg system
    Audiard, Corentin
    [J]. NONLINEARITY, 2017, 30 (09) : 3362 - 3399
  • [4] Local Well Posedness of the Euler-Korteweg Equations on Td
    Berti, M.
    Maspero, A.
    Murgante, F.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (03) : 1475 - 1513
  • [5] On the well-posedness for the Euler-Korteweg model in several space dimensions
    Benzoni-Gavage, S.
    Danchin, R.
    Descombes, S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) : 1499 - 1579
  • [6] Long wave asymptotics for the Euler-Korteweg system
    Benzoni-Gavage, Sylvie
    Chiron, David
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) : 245 - 304
  • [7] On the Euler-Korteweg System with Free Boundary Condition
    Tong Tang
    Hongjun Gao
    [J]. Acta Applicandae Mathematicae, 2017, 150 : 111 - 121
  • [8] On the Euler-Korteweg System with Free Boundary Condition
    Tang, Tong
    Gao, Hongjun
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2017, 150 (01) : 111 - 121
  • [9] Stability properties of the Euler-Korteweg system with nonmonotone pressures
    Giesselmann, Jan
    Tzavaras, Athanasios E.
    [J]. APPLICABLE ANALYSIS, 2017, 96 (09) : 1528 - 1546
  • [10] DISPERSIVE ESTIMATES FOR THE QHD SYSTEM AND EULER-KORTEWEG EQUATIONS
    Antonelli, Paolo
    Marcati, Pierangelo
    Zheng, Hao
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2021, 28 (02) : 85 - 104