Measuring the Lyapunov exponent using quantum mechanics

被引:0
|
作者
Cucchietti, FM
Lewenkopf, CH
Mucciolo, ER
Pastawski, HM
Vallejos, RO
机构
[1] Natl Univ Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[2] Univ Estado Rio De Janeiro, Inst Fis, BR-20559900 Rio De Janeiro, Brazil
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil
[4] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 04期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Measuring the Lyapunov exponent using quantum mechanics
    Cucchietti, F.M.
    Lewenkopf, C.H.
    Mucciolo, E.R.
    Pastawski, H.M.
    Vallejos, R.O.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04): : 1 - 046209
  • [2] Lyapunov exponent in quantum mechanics. A phase-space approach
    Man'ko, VI
    Mendes, RV
    [J]. PHYSICA D, 2000, 145 (3-4): : 330 - 348
  • [3] Extracting classical Lyapunov exponent from one-dimensional quantum mechanics
    Morita, Takeshi
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)
  • [4] On the notion of quantum Lyapunov exponent
    Kondratieva M.F.
    Osborn T.A.
    [J]. Journal of Mathematical Sciences, 2008, 150 (6) : 2500 - 2506
  • [5] Quantum Lyapunov exponent in dissipative systems
    Bergamasco, Pablo D.
    Carlo, Gabriel G.
    Rivas, Alejandro M. F.
    [J]. PHYSICAL REVIEW E, 2023, 108 (02)
  • [6] LYAPUNOV EXPONENT FOR QUANTUM DISSIPATIVE SYSTEMS
    CERDEIRA, HA
    FURUYA, K
    HUBERMAN, BA
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (22) : 2511 - 2513
  • [7] Scars on quantum networks ignore the Lyapunov exponent
    Schanz, H
    Kottos, T
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (23)
  • [8] Upper quantum Lyapunov exponent and parametric oscillators
    Jauslin, HR
    Sapin, O
    Guérin, S
    Wreszinski, WF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) : 4377 - 4385
  • [9] Loschmidt echo and Lyapunov exponent in a quantum disordered system
    Adamov, Y
    Gornyi, IV
    Mirlin, AD
    [J]. PHYSICAL REVIEW E, 2003, 67 (05):
  • [10] Correlation method for measuring the largest Lyapunov exponent in optical fields
    Gavrylyak, M. S.
    Maksimyak, A. P.
    Maksimyak, P. P.
    [J]. UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2008, 9 (02) : 119 - 127