On some properties of entropy solutions of degenerate non-linear anisotropic parabolic equations

被引:7
|
作者
Panov, Evgeny Yu [1 ,2 ]
机构
[1] Novgorod State Univ, 41 B St Petersburgskaya Str, Veliky Novgorod 173003, Russia
[2] RUDN Univ, Peoples Friendship Univ Russia, 6 Miklukho Maklaya St, Moscow 117198, Russia
基金
俄罗斯基础研究基金会;
关键词
Nonlinear parabolic equations; Conservation laws; Entropy solutions; Comparison principle; Nonlinearity-diffusivity condition; Decay property; CAUCHY-PROBLEM; WELL-POSEDNESS; DECAY; UNIQUENESS;
D O I
10.1016/j.jde.2020.11.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence of the largest and the smallest entropy solutions to the Cauchy problem for a nonlinear degenerate anisotropic parabolic equation. Applying this result, we establish the comparison principle in the case when at least one of the initial functions is periodic. In the case when initial function vanishes at infinity (in the sense of strong average) we prove the long time decay of an entropy solution under exact nonlinearity-diffusivity condition. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 166
页数:28
相关论文
共 50 条