MMDBC: Density-based Clustering Algorithm for Mixed Attributes and Multi-dimension Data

被引:6
|
作者
Du, Haizhou [1 ]
Fang, Wei [1 ]
Huang, Haining [1 ]
Zeng, Shuqin [1 ]
机构
[1] Shanghai Univ Elect Power, Sch Comp Sci & Technol, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/BigComp.2018.00093
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A large number of mixed attributes and multi-dimensional data that contain categorical attributes and numerical attributes have become ubiquitous in the real world. In this paper we present the approach which extends the density-based clustering algorithm to categorical domains and domains with mixed numeric and categorical attributes data. Here, datasets are classified three types according to the proportion of attributes, they will be divided into categorical priority, numerical priority, and equivalent priority. It builds mathematical model individually according to different situations. Our approach produces the ultimate result exactly after executing all range queries on numeric data and merging the weight of categorical attributes. Eventually, we use real-dataset, KDD CUP-99 and Adult datasets to demonstrate the clustering performance. The results also show that new approach has the characteristics of fast, efficient and robust.
引用
收藏
页码:549 / 552
页数:4
相关论文
共 50 条
  • [1] A Multi Density-based Clustering Algorithm for Data Stream with Noise
    Amini, Amineh
    Saboohi, Hadi
    Teh, Ying Wah
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2013, : 1105 - 1112
  • [2] An Efficient Density-Based Algorithm for Data Clustering
    Theljani, Foued
    Laabidi, Kaouther
    Zidi, Salah
    Ksouri, Moufida
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2017, 26 (04)
  • [3] A density-based clustering algorithm for the CYGNO data analysis
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Lacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauroc, R.
    Tomassini, S.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (12):
  • [4] Density-based clustering algorithm for mixture data sets
    Huang, De-Cai
    Wu, Tian-Hong
    [J]. Kongzhi yu Juece/Control and Decision, 2010, 25 (03): : 416 - 421
  • [5] Density-based clustering algorithm for numerical and categorical data with mixed distance measure methods
    Chen, Jin-Yin
    He, Hui-Hao
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2015, 32 (08): : 993 - 1002
  • [6] Research on density-based clustering algorithm for mixed data with determine cluster centers automatically
    Institute of Information Engineering, Zhejiang University of Technology, Hangzhou
    310023, China
    [J]. Zidonghua Xuebao Acta Auto. Sin., 10 (1798-1813):
  • [7] Density-based particle swarm optimization algorithm for data clustering
    Alswaitti, Mohammed
    Albughdadi, Mohanad
    Isa, Nor Ashidi Mat
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 170 - 186
  • [8] A Grid and Density-based Clustering Algorithm for Processing Data Stream
    Jia, Chen
    Tan, ChengYu
    Yong, Ai
    [J]. SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 517 - +
  • [9] An Efficient And Scalable Density-Based Clustering Algorithm For Normalize Data
    Nidhi
    Patel, Km Archana
    [J]. 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, COMMUNICATION & CONVERGENCE, ICCC 2016, 2016, 92 : 136 - 141
  • [10] Fast density-based clustering algorithm
    Zhou, Shuigeng
    Zhou, Aoying
    Cao, Jing
    Hu, Yunfa
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2000, 37 (11): : 1287 - 1292