Minimal submanifolds with a parallel or a harmonic p-form

被引:5
|
作者
Grosjean, JF [1 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan Math, F-54506 Vandoeuvre Les Nancy, France
关键词
Riemannian geometry; minimal submanifolds;
D O I
10.1016/j.geomphys.2003.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the relations between the existence of minimal immersions of a Riemannian manifold M into another and some structural or topological propel-ties of M. The properties on M which we consider are the existence of a parallel or a harmonic p-form. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 228
页数:18
相关论文
共 50 条
  • [1] Massive p-form trapping as a p-form on a brane
    I. C. Jardim
    G. Alencar
    R. R. Landim
    R. N. Costa Filho
    Journal of High Energy Physics, 2015
  • [2] Massive p-form trapping as a p-form on a brane
    Jardim, I. C.
    Alencar, G.
    Landim, R. R.
    Costa Filho, R. N.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):
  • [3] P-HARMONIC MAPS AND MINIMAL SUBMANIFOLDS
    BAIRD, P
    GUDMUNDSSON, S
    MATHEMATISCHE ANNALEN, 1992, 294 (04) : 611 - 624
  • [4] A new Lichnerowicz–Obata estimate in the presence of a parallel p-form
    Jean-François Grosjean
    manuscripta mathematica, 2002, 107 : 503 - 520
  • [5] P-FORM ELECTRODYNAMICS
    HENNEAUX, M
    TEITELBOIM, C
    FOUNDATIONS OF PHYSICS, 1986, 16 (07) : 593 - 617
  • [6] A new Lichnerowicz-Obata estimate in the presence of a parallel p-form
    Grosjean, JF
    MANUSCRIPTA MATHEMATICA, 2002, 107 (04) : 503 - 520
  • [7] Arbitrary p-form Galileons
    Deffayet, C.
    Deser, S.
    Esposito-Farese, G.
    PHYSICAL REVIEW D, 2010, 82 (06):
  • [8] CONFORMATION OF P-FORM DNA
    ZEHFUS, MH
    JOHNSON, WC
    BIOPOLYMERS, 1984, 23 (07) : 1269 - 1281
  • [9] Fluid/p-form duality
    Taghiloo, V.
    Vahidinia, M. H.
    PHYSICS LETTERS B, 2024, 849
  • [10] PARALLEL CALIBRATIONS AND MINIMAL SUBMANIFOLDS
    Robles, Colleen
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (02) : 383 - 395